
(a)
Interpretation:
The oxidation state of oxygen in
Concept introduction:
The
Oxidation is the process in which either loss of electrons, oxidation number increases, or loss of hydrogen atoms takes place. An element is oxidized, when oxidation number increases.
Reduction is the process in which either gain of electrons, oxidation number decreases, or gain of hydrogen atoms takes place. An element is reduced, when oxidation number decreases.
Oxidation state is also known as oxidation number. It is defined as the numbers which are assign to the elements in a chemical combination and number represents the electrons which an atom can share, lose or gain to form
Therefore, transfer of electrons refers to the oxidation state.
(b)
Interpretation:
The oxidation state of oxygen in
Concept introduction:
The chemical reaction in which both oxidation and reduction process takes place is known as redox reaction. In this reaction, transfer of electrons takes place among the elements.
Oxidation is the process in which either loss of electrons, oxidation number increases, or loss of hydrogen atoms takes place. An element is oxidized, when oxidation number increases.
Reduction is the process in which either gain of electrons, oxidation number decreases, or gain of hydrogen atoms takes place. An element is reduced, when oxidation number decreases.
Oxidation state is also known as oxidation number. It is defined as the numbers which are assign to the elements in a chemical combination and number represents the electrons which an atom can share, lose or gain to form chemical bonding with an atom of another element.
Therefore, transfer of electrons refers to the oxidation state.
(c)
Interpretation:
The oxidation state of oxygen in
Concept introduction:
The chemical reaction in which both oxidation and reduction process takes place is known as redox reaction. In this reaction, transfer of electrons takes place among the elements.
Oxidation is the process in which either loss of electrons, oxidation number increases, or loss of hydrogen atoms takes place. An element is oxidized, when oxidation number increases.
Reduction is the process in which either gain of electrons, oxidation number decreases, or gain of hydrogen atoms takes place. An element is reduced, when oxidation number decreases.
Oxidation state is also known as oxidation number. It is defined as the numbers which are assign to the elements in a chemical combination and number represents the electrons which an atom can share, lose or gain to form chemical bonding with an atom of another element.
Therefore, transfer of electrons refers to the oxidation state.
(d)
Interpretation:
The oxidation state of oxygen in
Concept introduction:
The chemical reaction in which both oxidation and reduction process takes place is known as redox reaction. In this reaction, transfer of electrons takes place among the elements.
Oxidation is the process in which either loss of electrons, oxidation number increases, or loss of hydrogen atoms takes place. An element is oxidized, when oxidation number increases.
Reduction is the process in which either gain of electrons, oxidation number decreases, or gain of hydrogen atoms takes place. An element is reduced, when oxidation number decreases.
Oxidation state is also known as oxidation number. It is defined as the numbers which are assign to the elements in a chemical combination and number represents the electrons which an atom can share, lose or gain to form chemical bonding with an atom of another element.
Therefore, transfer of electrons refers to the oxidation state.

Want to see the full answer?
Check out a sample textbook solution
Chapter 3 Solutions
GENERAL CHEMISTRY(LL)-W/MASTERINGCHEM.
- K Draw the starting structure that would lead to the major product shown under the provided conditions. Drawing 1. NaNH2 2. PhCH2Br 4 57°F Sunny Q Searcharrow_forward7 Draw the starting alkyl bromide that would produce this alkyne under these conditions. F Drawing 1. NaNH2, A 2. H3O+ £ 4 Temps to rise Tomorrow Q Search H2arrow_forward7 Comment on the general features of the predicted (extremely simplified) ¹H- NMR spectrum of lycopene that is provided below. 00 6 57 PPM 3 2 1 0arrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning





