Concept explainers
A ball is thrown with an initial speed vi at an angle θi with the horizontal. The horizontal range of the ball is R, and the ball reaches a maximum height R/6. In terms of R and g, find (a) the time interval during which the ball is in motion, (b) the ball’s speed at the peak of its path, (c) the initial vertical component of its velocity, (d) its initial speed, and (e) the angle θi. (f) Suppose the ball is thrown at the same initial speed found in (d) but at the angle appropriate for reaching the greatest height that it can. Find this height. (g) Suppose the ball is thrown at the same initial speed but at the angle for greatest possible range. Find this maximum horizontal range.
(a)
Theflight time of the ball in the motion .
Answer to Problem 54P
The flight time of the ball in the motion is
Explanation of Solution
Write the expression for the maximum height of the ball,
Here,
Write the expression for the horizontal range of the ball,
Here,
Substitute
Combine (I) and (II) and substitute
Rewrite the relation for
Write the expression for the vertical velocity of the ball,
Here,
Conclusion:
Substitute
Total time of the ball’s flight,
Therefore, theflight time of the ball in the motion is
(b)
Thespeed of the ball at the peak of its path.
Answer to Problem 54P
The speed of the ball at the peak of its path is
Explanation of Solution
Write the expression for the speed of the ball at the path’s peak,
Here,
Conclusion:
Substitute
Therefore, thespeed of the ball at the peak of its path is
(c)
The initial vertical component of the ball’s velocity .
Answer to Problem 54P
The initial vertical component of the ball’s velocity is
Explanation of Solution
Write the expression for the initial vertical velocity of the ball,
Here,
Conclusion:
Substitute
Therefore, theinitial vertical component of the ball’s velocity is
(d)
The initial speed of the ball.
Answer to Problem 54P
The initial speed of the ball is
Explanation of Solution
Write the expression for the initial speed of the ball,
Here,
Rewrite the above expression,
Conclusion:
Substitute
Therefore, theinitial speed of the ball is
(e)
The projectile angle of the ball .
Answer to Problem 54P
The projectile angle of the ballis
Explanation of Solution
Equation (III) divided by (V),
Conclusion:
Rewrite the above equation,
Therefore, theprojectile angle of the ball is
(f)
The maximum height of the ball when it throws at maximum projection angle.
Answer to Problem 54P
The maximum height of the ball when it throws at maximum projection angle is
Explanation of Solution
In this case, the maximum projection angle must be
From (I),
Write the expression for the maximum height of the ball thrown,
Here,
Conclusion:
Substitute
Therefore, themaximum height of the ball when it throws at maximum projection angle is
(g)
The maximum horizontal range of the ball.
Answer to Problem 54P
The maximum horizontal range of the ballis
Explanation of Solution
In this case, the maximum projection angle must be
Write the expression for the maximum range of the ball thrown,
Here,
Conclusion:
Substitute
Therefore, themaximum horizontal range of the ball is
Want to see more full solutions like this?
Chapter 3 Solutions
Principles of Physics: A Calculus-Based Text, Hybrid (with Enhanced WebAssign Printed Access Card)
- No chatgpt pls will upvotearrow_forwardsuggest a reason ultrasound cleaning is better than cleaning by hand?arrow_forwardCheckpoint 4 The figure shows four orientations of an electric di- pole in an external electric field. Rank the orienta- tions according to (a) the magnitude of the torque on the dipole and (b) the potential energy of the di- pole, greatest first. (1) (2) E (4)arrow_forward
- What is integrated science. What is fractional distillation What is simple distillationarrow_forward19:39 · C Chegg 1 69% ✓ The compound beam is fixed at Ę and supported by rollers at A and B. There are pins at C and D. Take F=1700 lb. (Figure 1) Figure 800 lb ||-5- F 600 lb بتا D E C BO 10 ft 5 ft 4 ft-—— 6 ft — 5 ft- Solved Part A The compound beam is fixed at E and... Hình ảnh có thể có bản quyền. Tìm hiểu thêm Problem A-12 % Chia sẻ kip 800 lb Truy cập ) D Lưu of C 600 lb |-sa+ 10ft 5ft 4ft6ft D E 5 ft- Trying Cheaa Những kết quả này có hữu ích không? There are pins at C and D To F-1200 Egue!) Chegg Solved The compound b... Có Không ☑ ||| Chegg 10 וחarrow_forwardNo chatgpt pls will upvotearrow_forward
- No chatgpt pls will upvotearrow_forwardNo chatgpt pls will upvotearrow_forwardair is pushed steadily though a forced air pipe at a steady speed of 4.0 m/s. the pipe measures 56 cm by 22 cm. how fast will air move though a narrower portion of the pipe that is also rectangular and measures 32 cm by 22 cmarrow_forward
- No chatgpt pls will upvotearrow_forward13.87 ... Interplanetary Navigation. The most efficient way to send a spacecraft from the earth to another planet is by using a Hohmann transfer orbit (Fig. P13.87). If the orbits of the departure and destination planets are circular, the Hohmann transfer orbit is an elliptical orbit whose perihelion and aphelion are tangent to the orbits of the two planets. The rockets are fired briefly at the depar- ture planet to put the spacecraft into the transfer orbit; the spacecraft then coasts until it reaches the destination planet. The rockets are then fired again to put the spacecraft into the same orbit about the sun as the destination planet. (a) For a flight from earth to Mars, in what direction must the rockets be fired at the earth and at Mars: in the direction of motion, or opposite the direction of motion? What about for a flight from Mars to the earth? (b) How long does a one- way trip from the the earth to Mars take, between the firings of the rockets? (c) To reach Mars from the…arrow_forwardNo chatgpt pls will upvotearrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning