
Concept explainers
(a)
The time of his flight .
(a)

Answer to Problem 18P
The time of his flight is
Explanation of Solution
Write the expression for the vertical final velocity of the basketball player.
Here,
Write the expression for the time of flight,
Conclusion:
For upward flight,
Substitute
For downward flight,
Substitute
Substitute
Therefore, the time of his flight is
(b)
The horizontal velocity component of the basketball player at instant of take-off .
(b)

Answer to Problem 18P
The horizontal velocity component of the basketball player at instant of take-off is
Explanation of Solution
Write the total horizontal displacement of the basketball player,
Here,
Conclusion:
Substitute
Therefore, the horizontal velocity component of the basketball player at instant of take-off is
(c)
The vertical velocity component of the basketball player at instant of take-off .
(c)

Answer to Problem 18P
The vertical velocity component of the basketball player at instant of take-off is
Explanation of Solution
From part (a), for upward flight,
Write the expression for the vertical final velocity of the basketball player.
Here,
Conclusion:
For upward flight,
Substitute
Therefore, the vertical velocity component of the basketball player at instant of take-off is
(d)
The take-off angle of the basketball player .
(d)

Answer to Problem 18P
The take-off angle of the basketball player is
Explanation of Solution
Write the take-off angle of the basketball player,
Here,
Conclusion:
Substitute
Therefore, the take-off angle of the basketball player is
(e)
The flight time of the whitetail deer .
(e)

Answer to Problem 18P
The flight time of the whitetail deer is
Explanation of Solution
From part (a),
Write the expression for the vertical final velocity of the basketball player.
Here,
Write the expression for the flight time of the whitetail deer,
Here,
Conclusion:
For upward flight,
Substitute
For downward flight,
Substitute
Substitute
Therefore, the flight time of the whitetail deer is
Want to see more full solutions like this?
Chapter 3 Solutions
Principles of Physics: A Calculus-Based Text, Hybrid (with Enhanced WebAssign Printed Access Card)
- Two conductors having net charges of +14.0 µC and -14.0 µC have a potential difference of 14.0 V between them. (a) Determine the capacitance of the system. F (b) What is the potential difference between the two conductors if the charges on each are increased to +196.0 µC and -196.0 µC? Varrow_forwardPlease see the attached image and answer the set of questions with proof.arrow_forwardHow, Please type the whole transcript correctly using comma and periods as needed. I have uploaded the picture of a video on YouTube. Thanks,arrow_forward
- A spectra is a graph that has amplitude on the Y-axis and frequency on the X-axis. A harmonic spectra simply draws a vertical line at each frequency that a harmonic would be produced. The height of the line indicates the amplitude at which that harmonic would be produced. If the Fo of a sound is 125 Hz, please sketch a spectra (amplitude on the Y axis, frequency on the X axis) of the harmonic series up to the 4th harmonic. Include actual values on Y and X axis.arrow_forwardSketch a sign wave depicting 3 seconds of wave activity for a 5 Hz tone.arrow_forwardSketch a sine wave depicting 3 seconds of wave activity for a 5 Hz tone.arrow_forward
- The drawing shows two long, straight wires that are suspended from the ceiling. The mass per unit length of each wire is 0.050 kg/m. Each of the four strings suspending the wires has a length of 1.2 m. When the wires carry identical currents in opposite directions, the angle between the strings holding the two wires is 20°. (a) Draw the free-body diagram showing the forces that act on the right wire with respect to the x axis. Account for each of the strings separately. (b) What is the current in each wire? 1.2 m 20° I -20° 1.2 marrow_forwardplease solve thisarrow_forwardplease solve everything in detailarrow_forward
- 6). What is the magnitude of the potential difference across the 20-02 resistor? 10 Ω 11 V - -Imm 20 Ω 10 Ω 5.00 10 Ω a. 3.2 V b. 7.8 V C. 11 V d. 5.0 V e. 8.6 Varrow_forward2). How much energy is stored in the 50-μF capacitor when Va - V₁ = 22V? 25 µF b 25 µF 50 µFarrow_forward9). A series RC circuit has a time constant of 1.0 s. The battery has a voltage of 50 V and the maximum current just after closing the switch is 500 mA. The capacitor is initially uncharged. What is the charge on the capacitor 2.0 s after the switch is closed? R 50 V a. 0.43 C b. 0 66 C c. 0.86 C d. 0.99 C Carrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University





