For any positive integer n and any angle θ , show that in the group S L ( 2 , R ) , [ cos θ − sin θ sin θ cos θ ] = [ cos n θ − sin n θ sin n θ cos n θ ] .Use this formula to find the order of [ cos 60 ° − sin 60 ° sin 60 ° cos 60 ° ] = [ cos 2 ° − sin 2 ° sin 2 ° cos 2 ° ] .(Geometrically, [ cos θ − sin θ sin θ cos θ ] represents a rotation of the plane θ degrees.)
For any positive integer n and any angle θ , show that in the group S L ( 2 , R ) , [ cos θ − sin θ sin θ cos θ ] = [ cos n θ − sin n θ sin n θ cos n θ ] .Use this formula to find the order of [ cos 60 ° − sin 60 ° sin 60 ° cos 60 ° ] = [ cos 2 ° − sin 2 ° sin 2 ° cos 2 ° ] .(Geometrically, [ cos θ − sin θ sin θ cos θ ] represents a rotation of the plane θ degrees.)
Solution Summary: The author explains that G is the symmetry group of a circle. As n increases to infinity, the polygon becomes symmetric.
For any positive integer n and any angle
θ
, show that in the group
S
L
(
2
,
R
)
,
[
cos
θ
−
sin
θ
sin
θ
cos
θ
]
=
[
cos
n
θ
−
sin
n
θ
sin
n
θ
cos
n
θ
]
.Use this formula to find the order of
[
cos
60
°
−
sin
60
°
sin
60
°
cos
60
°
]
=
[
cos
2
°
−
sin
2
°
sin
2
°
cos
2
°
]
.(Geometrically,
[
cos
θ
−
sin
θ
sin
θ
cos
θ
]
represents a rotation of the plane
θ
degrees.)
Solve the system of equation for y using Cramer's rule. Hint: The
determinant of the coefficient matrix is -23.
-
5x + y − z = −7
2x-y-2z = 6
3x+2z-7
eric
pez
Xte
in
z=
Therefore, we have
(x, y, z)=(3.0000,
83.6.1 Exercise
Gauss-Seidel iteration with
Start with (x, y, z) = (0, 0, 0). Use the convergent Jacobi i
Tol=10 to solve the following systems:
1.
5x-y+z = 10
2x-8y-z=11
-x+y+4z=3
iteration (x
Assi 2
Assi 3.
4.
x-5y-z=-8
4x-y- z=13
2x - y-6z=-2
4x y + z = 7
4x-8y + z = -21
-2x+ y +5z = 15
4x + y - z=13
2x - y-6z=-2
x-5y- z=-8
realme Shot on realme C30
2025.01.31 22:35
f
Use Pascal's triangle to expand the binomial
(6m+2)^2
Chapter 3 Solutions
Student Solutions Manual for Gallian's Contemporary Abstract Algebra, 9th
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.