a.
To find: A quadratic model, an exponential model and a power model for given data and then to identify the coefficient of determination for each model.
a.
Answer to Problem 47CLT
Quadratic model is
Exponential model is
Power model is
Explanation of Solution
Given Information: A relevant table and
Calculation:
Using regression feature of graphing utility to calculate a quadratic model,
Using regression feature of graphing utility to calculate an exponential model,
Using regression feature of graphing utility to calculate a power model,
b.
To graph: Each model with the original data using a graphing utility.
b.
Explanation of Solution
Given Information: A relevant table and models from previous part.
Graphs:
Quadratic model:
Exponential model:
Power model:
c.
To find: The model that best fits the data.
c.
Answer to Problem 47CLT
Power model best fits the data because of its favorable coefficient of determination.
Explanation of Solution
Given Information: Models and their coefficient of determination (from previous parts).
Calculation:
Out of three values, coefficient of determination
Thus, power model best fits the data because of its favorable coefficient of determination.
d.
To predict: The annual sales of Wal-Mart in
d.
Answer to Problem 47CLT
In
Explanation of Solution
Given Information: Power model calculated previously.
Calculation:
In previous part, power model was chosen because it best fits the data, using power model to predict for
This is reasonable because as population and awareness increase, demand also increases and as a result sales soar.
Thus, in
Chapter 3 Solutions
Precalculus with Limits: A Graphing Approach
- Use the shell method to find the volume of the solid generated by revolving the region bounded by the curves and lines about the y-axis. y=x², y=7-6x, x = 0, for x≥0arrow_forwardThe graph of f(x) is given below. Select all of the true statements about the continuity of f(x) at x = −3. -7-6- -5- +1 23456 1 2 3 4 5 67 Select the correct answer below: ○ f(x) is not continuous at x = f(x) is not continuous at x = f(x) is not continuous at x = f(x) is continuous at x = -3 -3 because f(-3) is not defined. -3 because lim f(x) does not exist. 2-3 -3 because lim f(x) = f(−3). 2-3arrow_forwardCould you explain how this was solved, I don’t understand the explanation before the use of the shift property As well as the simplification afterwardsarrow_forward
- Question The function f(x) is shown in the graph below. Which of the following statements are true? Select all that apply. f(x) 12 10 -16 -14 -12 -10 -8 + -4 " 10 12 14 16 a Select all that apply: ☐ Condition 1 is satisfied. ☐ Condition 2 is satisfied. ☐ Condition 3 is satisfied. ☐ f(x) is continuous.arrow_forwardFind the equation of the line / in the figure below. Give exact values using the form y = mx + b. m = b = y WebAssign Plot f(x) = 10* log 9 Xarrow_forwardA particle travels along a straight line path given by s=9.5t3-2.2t2-4.5t+9.9 (in meters). What time does it change direction? Report the higher of the answers to the nearest 2 decimal places in seconds.arrow_forward
- Use the method of disks to find the volume of the solid that is obtained when the region under the curve y = over the interval [4,17] is rotated about the x-axis.arrow_forward1. Find the area of the region enclosed between the curves y = x and y = x. Sketch the region.arrow_forwardfor the given rectangular coordinates, find two sets of polar coordinates for which 0≤θ<2π, one with r>0 and the other with r<0. (-2sqrt(3),9)arrow_forward
- I circled the correct answer, could you show me how to do it using divergence and polar coordinatesarrow_forwardThe correct answer is D Could you explain and show the steps pleasearrow_forwardTaylor Series Approximation Example- H.W More terms used implies better approximation f(x) 4 f(x) Zero order f(x + 1) = f(x;) First order f(x; + 1) = f(x;) + f'(x;)h 1.0 Second order 0.5 True f(x + 1) = f(x) + f'(x)h + ƒ"(x;) h2 2! f(x+1) 0 x; = 0 x+1 = 1 x h f(x)=0.1x4-0.15x³- 0.5x2 -0.25x + 1.2 51 Taylor Series Approximation H.w: Smaller step size implies smaller error Errors f(x) + f(x,) Zero order f(x,+ 1) = f(x) First order 1.0 0.5 Reduced step size Second order True f(x + 1) = f(x) + f'(x)h f(x; + 1) = f(x) + f'(x)h + "(xi) h2 f(x,+1) O x₁ = 0 x+1=1 Using Taylor Series Expansion estimate f(1.35) with x0 =0.75 with 5 iterations (or & s= 5%) for f(x)=0.1x 0.15x³-0.5x²- 0.25x + 1.2 52arrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning