Bundle: Physics for Scientists and Engineers, Volume 2, Loose-leaf Version, 10th + WebAssign Printed Access Card, Single-Term
Bundle: Physics for Scientists and Engineers, Volume 2, Loose-leaf Version, 10th + WebAssign Printed Access Card, Single-Term
10th Edition
ISBN: 9781337888745
Author: SERWAY, Raymond A., Jewett, John W.
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 3, Problem 46CP

A pirate has buried his treasure on an island with five trees located at the points (30.0 m, −20.0 m), (60.0 m, 80.0 m). (−10.0 m, −10.0 m), (40.0 m, −30.0 m), and (−70.0 m, 60.0 m), all measured relative to some origin, as shown in Figure P3.46. His ship’s log instructs you to start at tree A and move toward tree B, but to cover only one-half the distance between A and B. Then move toward tree C, covering one-third the distance between your current location and C. Next move toward tree D, covering one-fourth the distance between where you are and D. Finally move toward tree E, covering one-fifth the distance between you and E, stop, and dig. (a) Assume you have correctly determined the order in which the pirate labeled the trees as A, B, C, D, and E as shown in the figure. What are the coordinates of the point where his treasure is buried? (b) What If? What if you do not really know the way the pirate labeled the trees? What would happen to the answer if you rearranged the order of the trees, for instance, to B (30 m, −20 m), A (60 m, 80 m), E (−10 m, −10 m), C (40 m, −30 m), and D (−70 m, 60 m)? State reasoning to show that the answer does not depend on the order in which the trees are labeled.

Figure P3.46

Chapter 3, Problem 46CP, A pirate has buried his treasure on an island with five trees located at the points (30.0 m, 20.0

(a)

Expert Solution
Check Mark
To determine
The coordinates of the treasure points.

Answer to Problem 46CP

The coordinates of the treasure points are (10i^+16j^)m .

Explanation of Solution

Section 1:

To determine: The first position vector moving from tree A to tree B.

Answer: The first position vector moving from tree A to tree B is (45.0i^+30.0j^)m .

Explanation:

Given information:

The coordinates of tree A are (30.0m,20.0m) , the coordinates of tree B are (60.0m,80.0m) , the coordinates of tree C are (10.0m,10.0m) , the coordinates of tree D are (40.0m,30.0m) and the coordinates of tree E are (70.0m,60.0m) .

Formula to calculate the first position vector moving from tree A to tree B as per condition is,

d1=A+B¯A2

  • d1 is the position vector of first position.

Substitute (60.0i^+80.0j^)m for B and (30.0i^20.0j^)m for A in the above equation.

d1=(30.0i^20.0j^)m+(60.0i^+80.0j^)m(30.0i^20.0j^)m2=(45.0i^+30.0j^)m

Section 2:

To determine: The second position vector moving from first position to tree C.

Answer: The second position vector moving from first position to tree C is (26.67i^+16.67j^)m .

Explanation:

Given information:

The coordinates of tree A are (30.0m,20.0m) , the coordinates of tree B are (60.0m,80.0m) , the coordinates of tree C are (10.0m,10.0m) , the coordinates of tree D are (40.0m,30.0m) and the coordinates of tree E are (70.0m,60.0m) .

Formula to calculate the second position vector moving from first location to tree C as per condition is,

d2=d1+Cd13

  • d2 is the position vector of second position.

Substitute (10.0i^10.0j^)m for C and (45.0i^+30.0j^)m for d1 in the above equation.

d2=(45.0i^+50.0j^)m(10.0i^10.0j^)m(45.0i^+30.0j^)m3=(26.67i^+16.67j^)m

Section 3:

To determine: The third position vector moving from second position to tree D.

Answer: The third position vector moving from second position to tree D is (30i^+5j^)m .

Explanation:

Given information:

The coordinates of tree A are (30.0m,20.0m) , the coordinates of tree B are (60.0m,80.0m) , the coordinates of tree C are (10.0m,10.0m) , the coordinates of tree D are (40.0m,30.0m) and the coordinates of tree E are (70.0m,60.0m) .

Formula to calculate the third position vector moving from second location to tree D as per condition is,

d3=d2+Dd24

  • d3 is the position vector of third position.

Substitute (40.0i^30.0j^)m for D and (26.67i^+16.67j^)m for d2 in the above equation.

d3=(26.67i^+16.67j^)m+(40.0i^30.0j^)m(26.67i^+16.67j^)m4=(30i^+5j^)m

Section 4:

To determine: The fourth position vector moving from third position to tree E.

Answer: The fourth position vector moving from third position to tree E is (10i^+16j^)m .

Explanation:

Given information:

The coordinates of tree A are (30.0m,20.0m) , the coordinates of tree B are (60.0m,80.0m) , the coordinates of tree C are (10.0m,10.0m) , the coordinates of tree D are (40.0m,30.0m) and the coordinates of tree E are (70.0m,60.0m) .

Formula to calculate the fourth position vector moving from third location to tree E as per condition is,

d4=d3+Ed35

  • d4 is the position vector of fourth position.

Substitute (70.0i^+60.0j^)m for E and (30i^+5j^)m for d3 in the above equation.

d4=(30i^+7.33j^)m(70.0i^+60.0j^)m(30i^+7.33j^)m5=(10i^+16j^)m

Conclusion:

Therefore, the coordinates of the treasure points are (10i^+16j^)m .

(b)

Expert Solution
Check Mark
To determine
The new coordinates of the treasure points.

Answer to Problem 46CP

The new coordinates of the treasure points are (10i^+16j^)m .

Explanation of Solution

Section 1:

To determine: The first position vector moving from tree A to tree B.

Answer: The first position vector moving from tree A to tree B is (45.0i^+30.0j^)m .

Explanation:

Given information:

The coordinates of tree A are (60.0m,80.0m) , the coordinates of tree B are (30.0m,20.0m) , the coordinates of tree C are (40.0m,30.0m) , the coordinates of tree D are (70.0m,60.0m) and the coordinates of tree E are (10.0m,10.0m) .

Formula to calculate the first position vector moving from tree A to tree B as per condition is,

D1=A+BA2

  • D1 is the position vector of first position.

Substitute (30.0i^20.0j^)m for B and (60.0i^+80.0j^)m for A in the above equation.

D1=(60.0i^+80.0j^)m(30.0i^20.0j^)m(60.0i^+80.0j^)m2=(45.0i^+30.0j^)m

Section 2:

To determine: The second position vector moving from first position to tree C.

Answer: The second position vector moving from first position to tree C is (43.33i^+10j^)m .

Explanation:

Given information:

The coordinates of tree A are (60.0m,80.0m) , the coordinates of tree B are (30.0m,20.0m) , the coordinates of tree C are (40.0m,30.0m) , the coordinates of tree D are (70.0m,60.0m) and the coordinates of tree E are (10.0m,10.0m) .

Formula to calculate the second position vector moving from first location to tree C as per condition is,

D2=D1+CD13

  • D2 is the position vector of second position.

Substitute (40.0i^30.0j^)m for C and (45.0i^+30.0j^)m for D1 in the above equation.

D2=(45.0i^+30.0j^)m+(40.0i^30.0j^)m(45.0i^+30.0j^)m3=(43.33i^+10j^)m

Section 3:

To determine: The third position vector moving from second position to tree D.

Answer: The third position vector moving from second position to tree D is (15i^+22.5j^)m .

Explanation:

Given information:

The coordinates of tree A are (60.0m,80.0m) , the coordinates of tree B are (30.0m,20.0m) , the coordinates of tree C are (40.0m,30.0m) , the coordinates of tree D are (70.0m,60.0m) and the coordinates of tree E are (10.0m,10.0m) .

Formula to calculate the third position vector moving from second location to tree D as per condition is,

D3=D2+DD24

  • D3 is the position vector of third position.

Substitute (70.0i^+60.0j^)m for D and (43.33i^+10j^)m for D2 in the above equation.

D3=(43.33i^+10j^)m+(70.0i^+60.0j^)m(43.33i^+10j^)m4=(15i^+22.5j^)m

Section 4:

To determine: The fourth position vector moving from third position to tree E.

Answer: The fourth position vector moving from third position to tree E is (10i^+16j^)m .

Explanation:

Given information:

The coordinates of tree A are (60.0m,80.0m) , the coordinates of tree B are (30.0m,20.0m) , the coordinates of tree C are (40.0m,30.0m) , the coordinates of tree D are (70.0m,60.0m) and the coordinates of tree E are (10.0m,10.0m) .

Formula to calculate the fourth position vector moving from third location to tree E as per condition is,

D4=D3+ED35

  • D4 is the position vector of fourth position.

Substitute (10.0i^10.0j^)m for E and (15i^+22.5j^)m for D3 in the above equation.

D4=(15i^+22.5j^)m+(10.0i^10.0j^)m(15i^+22.5j^)m5=(10i^+16j^)m

Conclusion:

Therefore, the coordinates of the treasure points are (10i^+16j^)m . The coordinates of the treasure point is same in both the part so, the answer does not depend on the order in which the trees are labeled.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A piece of silicon semiconductor has length L=0.01cm and cross-section in a square shape with an area of A=5×10−4cm2 . The semiconductor is doped with 1012cm−3 Phosphorus atoms and 1017cm−3 Boron atoms. An external electric field E=1.5×104N/C is applied to the silicon piece along the length direction, through the cross section. What is the total current in the silicon at T=300K? Assume the mobility of silicon is 1400cm2V−1s−1 for electrons and 450cm2V−1s−1 for holes, respectively. Assume the intrinsic carrier concentration in silicon is 1010cm−3 . Give your answer in mA, rounded to 3 significant figures. Just enter the number, nothing else.
An impurity with a charge of 2e is placed in a three-dimensional metal. Assume that the Friedel sum rule holds for this system, and only the scattering phase shifts from the electrons contribute to this sum (we don't need to consider ion phase shifts). This metal has a spherical Fermi surface with Fermi wave vector kF . The only degeneracy for the electrons at the Fermi surface is spin (two-fold) and angular momentum ( 2l+1 for each angular momentum l ). Ignore scattering for l>2 and assume that the scattering doesn't depend on the spin degree of freedom. Denote the scattering phase shift at the Fermi wave vector in the l -th angular momentum channel as δl(kF) . If δ0(kF)=11π31 , and δ1(kF)=π29 , what is δ2(kF)? Round your answer to three significant figures. Just enter the number, nothing else.
A pilot with a mass of 75 kg is flying an airplane at a true airspeed of 55m/s in air that is still relative to the ground. The pilot enters a coordinated turn of constant bank angle and constant altitude, and the pilot experiences an effective weight of 1471.5N normal to the wings of the plane. What is the rate of turn (in degrees per second) for the aircraft? Round your answer to three significant figures. Just enter the number, nothing else.

Chapter 3 Solutions

Bundle: Physics for Scientists and Engineers, Volume 2, Loose-leaf Version, 10th + WebAssign Printed Access Card, Single-Term

Ch. 3 - Vector A has a magnitude of 29 units and points in...Ch. 3 - A force F1 of magnitude 6.00 units acts on an...Ch. 3 - Three displacements are A=200m due south, B=250m...Ch. 3 - The displacement vectors A and B shown in Figure...Ch. 3 - A roller-coaster car moves 200 ft horizontally and...Ch. 3 - A minivan travels straight north in the right lane...Ch. 3 - A person walks 25.0 north of east for 3.10 km. How...Ch. 3 - Your dog is running around the grass in your back...Ch. 3 - Given the vectors A=2.00i+6.00j and B=3.00i2.00j,...Ch. 3 - The helicopter view in Fig. P3.15 shows two people...Ch. 3 - A snow-covered ski slope makes an angle of 35.0...Ch. 3 - Consider the three displacement vectors m, m,...Ch. 3 - Vector A has x and y components of 8.70 cm and...Ch. 3 - Prob. 19PCh. 3 - Given the displacement vectors A=(3i4j+4k)m and...Ch. 3 - Vector A has a negative x component 3.00 units in...Ch. 3 - Three displacement vectors of a croquet ball are...Ch. 3 - Prob. 23PCh. 3 - Prob. 24PCh. 3 - Use the component method to add the vectors A and...Ch. 3 - A girl delivering newspapers covers her route by...Ch. 3 - A man pushing a mop across a floor causes it to...Ch. 3 - Figure P3.28 illustrates typical proportions of...Ch. 3 - Review. As it passes over Grand Bahama Island, the...Ch. 3 - In an assembly operation illustrated in Figure...Ch. 3 - Review. You are standing on the ground at the...Ch. 3 - Why is the following situation impossible? A...Ch. 3 - In Figure P3.33, the line segment represents a...Ch. 3 - You are spending the summer as an assistant...Ch. 3 - A person going for a walk follows the path shown...Ch. 3 - A ferry transports tourists between three islands....Ch. 3 - Two vectors A and B have precisely equal...Ch. 3 - Two vectors A and B have precisely equal...Ch. 3 - Review. The biggest stuffed animal in the world is...Ch. 3 - Ecotourists use their global positioning system...Ch. 3 - A vector is given by R=2i+j+3k. Find (a) the...Ch. 3 - You are working as an assistant to an air-traffic...Ch. 3 - Review. The instantaneous position of an object is...Ch. 3 - Vectors A and B have equal magnitudes of 5.00. The...Ch. 3 - A rectangular parallelepiped has dimensions a, b,...Ch. 3 - A pirate has buried his treasure on an island with...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Introduction to Vectors and Their Operations; Author: Professor Dave Explains;https://www.youtube.com/watch?v=KBSCMTYaH1s;License: Standard YouTube License, CC-BY