EBK UNDERSTANDING OUR UNIVERSE (THIRD E
3rd Edition
ISBN: 9780393631760
Author: Blumenthal
Publisher: VST
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 3, Problem 45QAP
(a)
To determine
The time taken by Earth-like planet to complete one round around Vega.
(b)
To determine
The speed of the Earth-like planet in its orbit around Vega.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
In a solar system far far away, a star that is twice the mass of the Sun is orbited by a planet that is 3/4 the mass of the Earth. The planet takes 2.33 years to orbit around the star. What is the distance between the planet and the star?
Please find mass of sun and speed of planet..
Two Planets, A and B, are orbiting a common star. Planet A is twice as massive as planet B and orbits at twice the distance from the star. Planet A orbits the star with a 'year' that is 240 days long. Assuming that both planets have the same average density, how long (in days) is a year on planet B?
Chapter 3 Solutions
EBK UNDERSTANDING OUR UNIVERSE (THIRD E
Ch. 3.1 - Prob. 3.1CYUCh. 3.2 - Prob. 3.2CYUCh. 3.3 - Prob. 3.3CYUCh. 3.4 - Prob. 3.4CYUCh. 3.5 - Prob. 3.5CYUCh. 3 - Prob. 1QAPCh. 3 - Prob. 2QAPCh. 3 - Prob. 3QAPCh. 3 - Prob. 4QAPCh. 3 - Prob. 5QAP
Ch. 3 - Prob. 6QAPCh. 3 - Prob. 7QAPCh. 3 - Prob. 8QAPCh. 3 - Prob. 9QAPCh. 3 - Prob. 10QAPCh. 3 - Prob. 11QAPCh. 3 - Prob. 12QAPCh. 3 - Prob. 13QAPCh. 3 - Prob. 14QAPCh. 3 - Prob. 15QAPCh. 3 - Prob. 16QAPCh. 3 - Prob. 17QAPCh. 3 - Prob. 18QAPCh. 3 - Prob. 19QAPCh. 3 - Prob. 20QAPCh. 3 - Prob. 21QAPCh. 3 - Prob. 22QAPCh. 3 - Prob. 23QAPCh. 3 - Prob. 24QAPCh. 3 - Prob. 25QAPCh. 3 - Prob. 26QAPCh. 3 - Prob. 27QAPCh. 3 - Prob. 28QAPCh. 3 - Prob. 29QAPCh. 3 - Prob. 30QAPCh. 3 - Prob. 31QAPCh. 3 - Prob. 32QAPCh. 3 - Prob. 33QAPCh. 3 - Prob. 34QAPCh. 3 - Prob. 35QAPCh. 3 - Prob. 36QAPCh. 3 - Prob. 37QAPCh. 3 - Prob. 38QAPCh. 3 - Prob. 39QAPCh. 3 - Prob. 40QAPCh. 3 - Prob. 41QAPCh. 3 - Prob. 42QAPCh. 3 - Prob. 43QAPCh. 3 - Prob. 44QAPCh. 3 - Prob. 45QAP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Suppose the gravitational acceleration at the surface of a certain moon A of Jupiter is 2 m/s2. Moon B has twice the mass and twice the radius of moon A. What is the gravitational acceleration at its surface? Neglect the gravitational acceleration due to Jupiter, (a) 8 m/s2 (b) 4 m/s2 (c) 2 m/s2 (d) 1 m/s2 (e) 0.5 m/s2arrow_forwardFor many years, astronomer Percival Lowell searched for a Planet X that might explain some of the perturbations observed in the orbit of Uranus. These perturbations were later explained when the masses of the outer planets and planetoids, particularly Neptune, became better measured (Voyager 2). At the time, however, Lowell had proposed the existence of a Planet X that orbited the Sun with a mean distance of 43 AU. With what period would this Planet X orbit the Sun?arrow_forwardAstronomical observatrions of our Milky Way galaxy indicate that it has a mass of about 8.01011 solar masses. A star orbiting on the galaxy’s periphery is about 6.0104 light-years from its center. (a) What should the orbital period of that star be? (b) If its period is 6.0107 years instead, what is the mass of the galaxy? Such calculations are used to imply the existence of other matter, such as a very massive black hole at the center of the Milky Way.arrow_forward
- Model the Moons orbit around the Earth as an ellipse with the Earth at one focus. The Moons farthest distance (apogee) from the center of the Earth is rA = 4.05 108 m, and its closest distance (perigee) is rP = 3.63 108 m. a. Calculate the semimajor axis of the Moons orbit. b. How far is the Earth from the center of the Moons elliptical orbit? c. Use a scale such as 1 cm 108 m to sketch the EarthMoon system at apogee and at perigee and the Moons orbit. (The semiminor axis of the Moons orbit is roughly b = 3.84 108 m.)arrow_forwardTwo black holes (the remains of exploded stars), separated by a distance of 10.0 AU (1 AU = 1.50 1011 m), attract one another with a gravitational force of 8.90 1025 N. The combined mass of the two black holes is 4.00 1030 kg. What is the mass of each black hole?arrow_forwardA planet has two moons with identical mass. Moon 1 is in a circular orbit of radius r. Moon 2 is in a circular orbit of radius 2r. The magnitude of the gravitational force exerted by the planet on Moon 2 is (a) four times as large (b) twice as large (c) the same (d) half as large (e) one-fourth as large as the gravitational force exerted by the planet on Moon 1.arrow_forward
- Io, a satellite of Jupiter, has an orbital period of 1.77 days and an orbital radius of 4.22 105 km. From these data, determine the mass of Jupiter.arrow_forwardWhat is the orbital radius of an Earth satellite having a period of 1.00 h? (b) What is unreasonable about this result?arrow_forwardA planet has two moons of equal mass. Moon 1 is in a circular orbit of radius r. Moon 2 is in a circular orbit of radius 2r. What is the magnitude of the gravitational force exerted by the planet on Moon 2? (a) four times as large as that on Moon 1 (b) twice as large as that on Moon 1 (c) equal to that on Moon 1 (d) half as large as that on Moon 1 (e) one-fourth as large as that on Moon 1arrow_forward
- The astronaut orbiting the Earth in Figure P3.27 is preparing to dock with a Westar VI satellite. The satellite is in a circular orbit 600 km above the Earth’s surface, where the free-fall acceleration is 8.21 m/s2. Take the radius of the Earth as 6 400 km. Determine the speed of the satellite and the time interval required to complete one orbit around the Earth, which is the period of the satellite. Figure P3.27arrow_forwardOn a planet whose radius is 1.2107m , the acceleration due to gravity is 18m/s2 . What is the mass of the planet?arrow_forwardThe Sun has a mass of approximately 1.99 1030 kg. a. Given that the Earth is on average about 1.50 1011 m from the Sun, what is the magnitude of the Suns gravitational field at this distance? b. Sketch the magnitude of the gravitational field due to the Sun as a function of distance from the Sun. Indicate the Earths position on your graph. Assume the radius of the Sun is 7.00 108 m and begin the graph there. c. Given that the mass of the Earth is 5.97 1024 kg, what is the magnitude of the gravitational force on the Earth due to the Sun?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
What Is Circular Motion? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=1cL6pHmbQ2c;License: Standard YouTube License, CC-BY