
EBK COLLEGE PHYSICS
2nd Edition
ISBN: 9780134605500
Author: ETKINA
Publisher: PEARSON CO
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 3, Problem 3P
For each of the following situations, draw the forces exerted on the moving object and identify the other object causing each force. (a) You pull a wagon along a level floor using a rope oriented horizontally. (b) A bus moving on a horizontal road slows down in order to stop. (c) You lift your overnight bag into the overhead compartment on an airplane.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Current Attempt in Progress
In the figure what is the net electric potential at point P due to the four particles if V = 0 at infinity, q = 2.12 fC, and d = 1.75 cm?
d
Number
MI
Units
+q
Current Attempt in Progress
In the figure what is the net electric potential at point P due to the four particles if V = 0 at infinity, q = 2.12 fC, and d = 1.75 cm?
d
Number
MI
Units
+q
A 0.500 kg sphere moving with a velocity given by (2.00î – 2.60ĵ + 1.00k) m/s strikes another sphere of mass 1.50 kg moving with an initial velocity of (−1.00î + 2.00ĵ – 3.20k) m/s.
(a) The velocity of the 0.500 kg sphere after the collision is (-0.90î + 3.00ĵ − 8.00k) m/s. Find the final velocity of the 1.50 kg sphere.
R =
m/s
Identify the kind of collision (elastic, inelastic, or perfectly inelastic).
○ elastic
O inelastic
O perfectly inelastic
(b) Now assume the velocity of the 0.500 kg sphere after the collision is (-0.250 + 0.850ĵ - 2.15k) m/s. Find the final velocity of the 1.50 kg sphere.
✓ =
m/s
Identify the kind of collision.
O elastic
O inelastic
O perfectly inelastic
(c) Take the velocity of the 0.500 kg sphere after the collision as (−1.00ỉ + 3.40] + ak) m/s. Find the value of a and the velocity of the 1.50 kg sphere after an elastic collision. (Two values of a are possible, a positive value and a negative value. Report each with their
corresponding final velocities.)
a…
Chapter 3 Solutions
EBK COLLEGE PHYSICS
Ch. 3 - Review Question 3.1 How do we determine how many...Ch. 3 - Review Question 3.2 A book bag hanging from a...Ch. 3 - Review Question 3.3 An elevator in a tall office...Ch. 3 - Review Question 3.4 What is the main difference...Ch. 3 - Review Question 3.5 Your friend says that m is a...Ch. 3 - Review Question 3.6 Newton’s second law says that...Ch. 3 - Review Question 3.7 Three friends argue about the...Ch. 3 - Review Question 3.8 Is the following sentence...Ch. 3 - Review Question 3.9 Explain how an air bag and...Ch. 3 - An upward-moving elevator slows to a stop as it...
Ch. 3 - You apply the brakes of your car abruptly and your...Ch. 3 - Which of the statements below explains why a child...Ch. 3 - Which observers can explain the phenomenon of...Ch. 3 - 5. Which vector quantities describing a moving...Ch. 3 - You have probably observed that magnets attract...Ch. 3 - Which of the following velocity-versus-time graphs...Ch. 3 - A book sits on a tabletop. What force is the...Ch. 3 - 9. A spaceship moves in outer space. What happens...Ch. 3 - 10. A 0.10-kg apple falls on Earth, whose mass is...Ch. 3 - 11. A man stands on a scale and holds a heavy...Ch. 3 - You stand on a bathroom scale in a moving...Ch. 3 - A person pushes a 10-kg crate, exerting a 200-N...Ch. 3 - Two small balls of the same material, one of mass...Ch. 3 - 15. A box full of lead and a box of the same size...Ch. 3 -
16. Figure Q3.16 shows an unlabeled force...Ch. 3 - A person jumps from a wall and lands stiff-legged....Ch. 3 - A 3000-kg spaceship is moving away from a space...Ch. 3 - Figure Q3.19 is a velocity-versus-time graph for...Ch. 3 - 20. Explain the purpose of crumple zones, that is,...Ch. 3 - 21. Explain why when landing on a firm surface...Ch. 3 - A small car bumps into a large truck. Compare the...Ch. 3 - 23. You are pulling a sled. Compare the forces...Ch. 3 - 25. You are holding a 100-g apple. (a) What is the...Ch. 3 - 26. You throw a 100-g apple upward. (a) While the...Ch. 3 - After having been thrown upward, a 100-g apple...Ch. 3 - * In Figure P3.1 you see unlabeled force diagrams...Ch. 3 - 2. Draw a force diagram (a) for a bag hanging at...Ch. 3 - 3. For each of the following situations, draw the...Ch. 3 - 4. You hang a book bag on a spring scale and place...Ch. 3 - 5. A block of dry ice slides at constant velocity...Ch. 3 - 6. * You throw a ball upward. (a) Draw a motion...Ch. 3 - 7. A string pulls horizontally on a cart so that...Ch. 3 - 8. * Solving the previous problem, your friend...Ch. 3 - 9. * A string pulls horizontally on a cart so that...Ch. 3 - A block of dry ice slides at a constant velocity...Ch. 3 - 11 .Three motion diagrams for a moving elevator...Ch. 3 - 12. * A student holds a thin aluminum pie pan...Ch. 3 - * Figures P3.11a b, and c show three motion...Ch. 3 - 14. * A train traveling from New York to...Ch. 3 - *Explain the phenomenon of whiplash from two...Ch. 3 - An astronaut exerts a 100-N force pushing a beam...Ch. 3 - 17. Four people participate in a rope competition....Ch. 3 - 18. * Shot put throw During a practice shot put...Ch. 3 - * You know the sum of the forces F exerted on an...Ch. 3 - * You record the displacement of an object as a...Ch. 3 - 25. * Spider-Man Spider-Man holds the bottom of an...Ch. 3 - ** Matt is wearing Rollerblades. Beth pushes him...Ch. 3 - 27. * Stuntwoman The downward acceleration of a...Ch. 3 - EST Estimate the average force that a baseball...Ch. 3 - * Super Hornet jet takeoff A2.1104-kgF-18 Super...Ch. 3 - Lunar Lander The Lunar Lander of mass 2.01024 kg...Ch. 3 - 31. Aisha throws a ball upward Frances, standing...Ch. 3 - Students Lucia. Isabel, and Austin are...Ch. 3 - 33. * Astronaut Karen Nyberg, a 60-kg astronaut,...Ch. 3 - * A 0.10-kg apple falls off a tree branch that is...Ch. 3 - 35. ** An 80-kg fireman slides 5.0 m down a fire...Ch. 3 - * Earth exerts a 1.0-N gravitational force on an...Ch. 3 - * You push a bowling ball down the lane toward the...Ch. 3 - 38. * EST (a) A 50-kg skater initially at rest...Ch. 3 - 39. ** EST Basketball player LeBron James can jump...Ch. 3 - * EST The Scottish Tug of War Association contests...Ch. 3 - Consider the experiment described in Question 3.6...Ch. 3 - 42. * EST A friend drops a 0.625-kg basketball...Ch. 3 - 43 Car safety The National Transportation Safety...Ch. 3 - 44. * A 70-kg person in a moving car stops during...Ch. 3 - BIOESTLeft ventricle pumpingThe lower left chamber...Ch. 3 - Prob. 46GPCh. 3 - 47. ** EST Olympic dive During a practice dive,...Ch. 3 - 49. ** EST You are doing squats on a bathroom...Ch. 3 - ** EST Estimate the horizontal speed of the runner...Ch. 3 - 51. ** EST Estimate the maximum acceleration of...Ch. 3 - ** EST Estimate how much Earth would move during...Ch. 3 - In an early practice run while the rocket sled was...Ch. 3 - What is Stapps67m/sspeed in miles per hour? 30mi/h...Ch. 3 - 55. What is the magnitude of the acceleration of...Ch. 3 - 56. What is the magnitude of the acceleration of...Ch. 3 - What is the average force exerted by the...Ch. 3 - 58. What is the time interval for Stapp and his...Ch. 3 - Using proportions A proportion is defined as an...Ch. 3 - Using proportions A proportion is defined as an...Ch. 3 - Using proportions A proportion is defined as an...Ch. 3 - Using proportions A proportion is defined as an...Ch. 3 - Using proportions A proportion is defined as an...
Additional Science Textbook Solutions
Find more solutions based on key concepts
If someone at the other end of a room smokes a cigarette, you may breathe in some smoke. The movement of smoke ...
Campbell Essential Biology with Physiology (5th Edition)
What are four functions of connective tissue?
Anatomy & Physiology (6th Edition)
18. A metal wire is resting on a U-shaped conducting rail, as shown in Figure Q25.18. The rail is fixed in posi...
College Physics: A Strategic Approach (3rd Edition)
Heat lamps are commonly used to maintain foods at about 50C for as long as 12 hours in cafeteria serving lines....
Microbiology: An Introduction
HOW DO WE KNOW? In this chapter, we focused on extranuclear inheritance and how traits can be determined by gen...
Concepts of Genetics (12th Edition)
Carefully examine the common sedimentary rocks shown In Figure 2.13. Use these photos and the preceding discuss...
Applications and Investigations in Earth Science (9th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A cannon is rigidly attached to a carriage, which can move along horizontal rails, but is connected to a post by a large spring, initially unstretched and with force constant k = 1.31 x 104 N/m, as in the figure below. The cannon fires a 200-kg projectile at a velocity of 136 m/s directed 45.0° above the horizontal. 45.0° (a) If the mass of the cannon and its carriage is 5000 kg, find the recoil speed of the cannon. m/s (b) Determine the maximum extension of the spring. m (c) Find the maximum force the spring exerts on the carriage. (Enter the magnitude of the force.) Narrow_forwardlaunch angle. Passage Problems Alice (A), Bob (B), and Carrie (C) all start from their dorm and head for the library for an evening study session. Alice takes a straight path,arrow_forwardbelow the horizontal, and land 55 m horizontally from the end of the jump. Your job is to specify the slope of the ground so skiers' trajectories make an angle of only 3.0° with the ground on land- ing, ensuring their safety. What slope do you specify? T 9.5° -55 marrow_forward
- Make sure to draw a sketch and a free body diagram. DO NOT give me examples but ONLY the solutionarrow_forwardMake sure to draw a sketch AND draw a Free body diagramarrow_forwardP -3 ft 3 ft. O A B 1.5 ft Do 1.5 ft ✓ For the frame and loading shown, determine the magnitude of the reaction at C (in lb) if P = 55 lb. (Hint: Use the special cases: Two-force body and Three-force body.)arrow_forward
- A convex mirror (f.=-6.20cm) and a concave minor (f2=8.10 cm) distance of 15.5cm are facing each other and are separated by a An object is placed between the mirrors and is 7.8cm from each mirror. Consider the light from the object that reflects first from the convex mirror and then from the concave mirror. What is the distance of the image (dia) produced by the concave mirror? cm.arrow_forwardAn amusement park spherical mirror shows park spherical mirror shows anyone who stands 2.80m in front of it an upright image one and a half times the person's height. What is the focal length of the minor? m.arrow_forwardAn m = 69.0-kg person running at an initial speed of v = 4.50 m/s jumps onto an M = 138-kg cart initially at rest (figure below). The person slides on the cart's top surface and finally comes to rest relative to the cart. The coefficient of kinetic friction between the person and the cart is 0.440. Friction between the cart and ground can be ignored. (Let the positive direction be to the right.) m M (a) Find the final velocity of the person and cart relative to the ground. (Indicate the direction with the sign of your answer.) m/s (b) Find the friction force acting on the person while he is sliding across the top surface of the cart. (Indicate the direction with the sign of your answer.) N (c) How long does the friction force act on the person? S (d) Find the change in momentum of the person. (Indicate the direction with the sign of your answer.) N.S Find the change in momentum of the cart. (Indicate the direction with the sign of your answer.) N.S (e) Determine the displacement of the…arrow_forward
- Small ice cubes, each of mass 5.60 g, slide down a frictionless track in a steady stream, as shown in the figure below. Starting from rest, each cube moves down through a net vertical distance of h = 1.50 m and leaves the bottom end of the track at an angle of 40.0° above the horizontal. At the highest point of its subsequent trajectory, the cube strikes a vertical wall and rebounds with half the speed it had upon impact. If 10 cubes strike the wall per second, what average force is exerted upon the wall? N ---direction--- ▾ ---direction--- to the top to the bottom to the left to the right 1.50 m 40.0°arrow_forwardThe magnitude of the net force exerted in the x direction on a 3.00-kg particle varies in time as shown in the figure below. F(N) 4 3 A 2 t(s) 1 2 3 45 (a) Find the impulse of the force over the 5.00-s time interval. == N⚫s (b) Find the final velocity the particle attains if it is originally at rest. m/s (c) Find its final velocity if its original velocity is -3.50 î m/s. V₁ m/s (d) Find the average force exerted on the particle for the time interval between 0 and 5.00 s. = avg Narrow_forward••63 SSM www In the circuit of Fig. 27-65, 8 = 1.2 kV, C = 6.5 µF, R₁ S R₂ R3 800 C H R₁ = R₂ = R3 = 0.73 MQ. With C completely uncharged, switch S is suddenly closed (at t = 0). At t = 0, what are (a) current i̟ in resistor 1, (b) current 2 in resistor 2, and (c) current i3 in resistor 3? At t = ∞o (that is, after many time constants), what are (d) i₁, (e) i₂, and (f) iz? What is the potential difference V2 across resistor 2 at (g) t = 0 and (h) t = ∞o? (i) Sketch V2 versus t between these two extreme times. Figure 27-65 Problem 63.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Newton's Second Law of Motion: F = ma; Author: Professor Dave explains;https://www.youtube.com/watch?v=xzA6IBWUEDE;License: Standard YouTube License, CC-BY