
Calculate the total number of electrons that can occupy (a) one s orbital, (b) three p orbitals, (c) five d orbitals, (d) seven f orbitals.
(a)

Interpretation:
The total number of electrons which can occupy in s, p, d and f-orbitals should be identified using the concept of quantum numbers.
Concept Introduction
Quantum Numbers
Quantum numbers are explained for the distribution of electron density in an atom. They are derived from the mathematical solution of Schrodinger’s equation for the hydrogen atom. The types of quantum numbers are the principal quantum number (n), the angular momentum quantum number (l), the magnetic quantum number (ml) and the electron spin quantum number (ms). Each atomic orbital in an atom is categorized by a unique set of the quantum numbers.
Principal Quantum Number (n)
The principal quantum number (n) assigns the size of the orbital and specifies the energy of an electron. If the value of n is larger, then the average distance of an electron in the orbital from the nucleus will be greater. Therefore the size of the orbital is large. The principal quantum numbers have the integral values of 1, 2, 3 and so forth and it corresponds to the quantum number in Bohr’s model of the hydrogen atom. If all orbitals have the same value of ‘n’, they are said to be in the same shell (level). The total number of orbitals for a given n value is n2. As the value of ‘n’ increases, the energy of the electron also increases.
Angular Momentum Quantum Number (l)
The angular momentum quantum number (l) explains the shape of the atomic orbital. The values of l are integers which depend on the value of the principal quantum number, n. For a given value of n, the possible values of l range are from 0 to n − 1. If n = 1, there is only one possible value of l (l=0). If n = 2, there are two values of l: 0 and 1. If n = 3, there are three values of l: 0, 1, and 2. The value of l is selected by the letters s, p, d, and f. If l = 0, we have an s orbital; if l = 1, we have a p orbital; if l = 2, we have a d orbital and finally if l = 3, we have a f orbital. A collection of orbitals with the same value of n is called a shell. One or more orbitals with the same n and l values are referred to a subshell (sublevel). The value of l also has a slight effect on the energy of the subshell; the energy of the subshell increases with l (s < p < d < f).
Magnetic Quantum Number (ml)
The magnetic quantum number (ml) explains the orientation of the orbital in space. The value of ml depends on the value of l in a subshell. This number divides the subshell into individual orbitals which hold the electrons. For a certain value of l, there are (2l + 1) integral values of ml which is explained as follows:
ml = ‒ l, ..., 0, ..., +l
If l = 0, there is only one possible value of ml: 0.
If l = 1, then there are three values of ml: −1, 0, and +1.
If l = 2, there are five values of ml, namely, −2, −1, 0, +1, and +2.
If l = 3, there are seven values of ml, namely, −3, −2, −1, 0, +1, +2, and +3, and so on.
The number of ml values indicates the number of orbitals in a subshell with a particular l value. Therefore, each ml value refers to a different orbital.
Electron Spin Quantum Number (ms)
It specifies the orientation of the spin axis of an electron. An electron can spin in only one of two directions. There are two possible ways to represent ms values. They are +½ and ‒½. One electron spins in the clockwise direction. Another electron spins in the anticlockwise direction. But, no two electrons should have the same spin quantum number.
Pauli Exclusion Principle
No two electrons in an atom should have the four same quantum numbers. Two electrons are occupied in an atomic orbital because there are two possible values of ms. As an orbital can contain a maximum of only two electrons, the two electrons must have opposing spins. If two electrons have the same values of n, l and ml values, they should have different values of ms.
To find: Count the total number of electrons which can occupy in one s-orbital
Find the value of ‘l’ for one s-orbital
If the angular momentum quantum number (l) is 0, it corresponds to an s subshell for any value of the principal quantum number (n).
Find the value of ‘ml’ for one s-orbital
If l = 0, the magnetic quantum number (ml) has only one possible value which is again zero. It corresponds to an s orbital.
Count the electrons in one s-orbital
Answer to Problem 3.96QP
The total number of electrons which can occupy in one s-orbital is 2 (a).
Explanation of Solution
There is an s subshell in every shell and each s subshell contains just one orbital. In one orbital, there are two electrons are occupied. Therefore, the total number of electrons which can occupy in one s-orbital is 2.
(b)

Interpretation:
The total number of electrons which can occupy in s, p, d and f-orbitals should be identified using the concept of quantum numbers.
Concept Introduction
Quantum Numbers
Quantum numbers are explained for the distribution of electron density in an atom. They are derived from the mathematical solution of Schrodinger’s equation for the hydrogen atom. The types of quantum numbers are the principal quantum number (n), the angular momentum quantum number (l), the magnetic quantum number (ml) and the electron spin quantum number (ms). Each atomic orbital in an atom is categorized by a unique set of the quantum numbers.
Principal Quantum Number (n)
The principal quantum number (n) assigns the size of the orbital and specifies the energy of an electron. If the value of n is larger, then the average distance of an electron in the orbital from the nucleus will be greater. Therefore the size of the orbital is large. The principal quantum numbers have the integral values of 1, 2, 3 and so forth and it corresponds to the quantum number in Bohr’s model of the hydrogen atom. If all orbitals have the same value of ‘n’, they are said to be in the same shell (level). The total number of orbitals for a given n value is n2. As the value of ‘n’ increases, the energy of the electron also increases.
Angular Momentum Quantum Number (l)
The angular momentum quantum number (l) explains the shape of the atomic orbital. The values of l are integers which depend on the value of the principal quantum number, n. For a given value of n, the possible values of l range are from 0 to n − 1. If n = 1, there is only one possible value of l (l=0). If n = 2, there are two values of l: 0 and 1. If n = 3, there are three values of l: 0, 1, and 2. The value of l is selected by the letters s, p, d, and f. If l = 0, we have an s orbital; if l = 1, we have a p orbital; if l = 2, we have a d orbital and finally if l = 3, we have a f orbital. A collection of orbitals with the same value of n is called a shell. One or more orbitals with the same n and l values are referred to a subshell (sublevel). The value of l also has a slight effect on the energy of the subshell; the energy of the subshell increases with l (s < p < d < f).
Magnetic Quantum Number (ml)
The magnetic quantum number (ml) explains the orientation of the orbital in space. The value of ml depends on the value of l in a subshell. This number divides the subshell into individual orbitals which hold the electrons. For a certain value of l, there are (2l + 1) integral values of ml which is explained as follows:
ml = ‒ l, ..., 0, ..., +l
If l = 0, there is only one possible value of ml: 0.
If l = 1, then there are three values of ml: −1, 0, and +1.
If l = 2, there are five values of ml, namely, −2, −1, 0, +1, and +2.
If l = 3, there are seven values of ml, namely, −3, −2, −1, 0, +1, +2, and +3, and so on.
The number of ml values indicates the number of orbitals in a subshell with a particular l value. Therefore, each ml value refers to a different orbital.
Electron Spin Quantum Number (ms)
It specifies the orientation of the spin axis of an electron. An electron can spin in only one of two directions. There are two possible ways to represent ms values. They are +½ and ‒½. One electron spins in the clockwise direction. Another electron spins in the anticlockwise direction. But, no two electrons should have the same spin quantum number.
Pauli Exclusion Principle
No two electrons in an atom should have the four same quantum numbers. Two electrons are occupied in an atomic orbital because there are two possible values of ms. As an orbital can contain a maximum of only two electrons, the two electrons must have opposing spins. If two electrons have the same values of n, l and ml values, they should have different values of ms.
To find: Count the total number of electrons which can occupy in one p-orbital
Find the value of ‘l’ for one p-orbital
If the angular momentum quantum number (l) is 1, it corresponds to a p subshell for the principal quantum number (n) of 2 or greater values.
Find the value of ‘ml’ for one p-orbital
If l = 1, the magnetic quantum number (ml) has the three possible ways such as −1, 0 and +1 values. It corresponds to three p-subshells. They are labeled px, py, and pz with the subscripted letters indicating the axis along which each orbital is oriented. The three p orbitals are identical in size, shape and energy; they differ from one another only in orientation.
Count the electrons in one p-orbital.
Answer to Problem 3.96QP
The total number of electrons which can occupy in one p-orbital is 6 (b).
Explanation of Solution
There are three p-subshells in every p-orbitals. In one subshell, there are two electrons are occupied. In p-orbital, (3 × 2) = 6 electrons are occupied. Therefore, the total number of electrons which can occupy in one p-orbital is 6.
(c)

Interpretation:
The total number of electrons which can occupy in s, p, d and f-orbitals should be identified using the concept of quantum numbers.
Concept Introduction
Quantum Numbers
Quantum numbers are explained for the distribution of electron density in an atom. They are derived from the mathematical solution of Schrodinger’s equation for the hydrogen atom. The types of quantum numbers are the principal quantum number (n), the angular momentum quantum number (l), the magnetic quantum number (ml) and the electron spin quantum number (ms). Each atomic orbital in an atom is categorized by a unique set of the quantum numbers.
Principal Quantum Number (n)
The principal quantum number (n) assigns the size of the orbital and specifies the energy of an electron. If the value of n is larger, then the average distance of an electron in the orbital from the nucleus will be greater. Therefore the size of the orbital is large. The principal quantum numbers have the integral values of 1, 2, 3 and so forth and it corresponds to the quantum number in Bohr’s model of the hydrogen atom. If all orbitals have the same value of ‘n’, they are said to be in the same shell (level). The total number of orbitals for a given n value is n2. As the value of ‘n’ increases, the energy of the electron also increases.
Angular Momentum Quantum Number (l)
The angular momentum quantum number (l) explains the shape of the atomic orbital. The values of l are integers which depend on the value of the principal quantum number, n. For a given value of n, the possible values of l range are from 0 to n − 1. If n = 1, there is only one possible value of l (l=0). If n = 2, there are two values of l: 0 and 1. If n = 3, there are three values of l: 0, 1, and 2. The value of l is selected by the letters s, p, d, and f. If l = 0, we have an s orbital; if l = 1, we have a p orbital; if l = 2, we have a d orbital and finally if l = 3, we have a f orbital. A collection of orbitals with the same value of n is called a shell. One or more orbitals with the same n and l values are referred to a subshell (sublevel). The value of l also has a slight effect on the energy of the subshell; the energy of the subshell increases with l (s < p < d < f).
Magnetic Quantum Number (ml)
The magnetic quantum number (ml) explains the orientation of the orbital in space. The value of ml depends on the value of l in a subshell. This number divides the subshell into individual orbitals which hold the electrons. For a certain value of l, there are (2l + 1) integral values of ml which is explained as follows:
ml = ‒ l, ..., 0, ..., +l
If l = 0, there is only one possible value of ml: 0.
If l = 1, then there are three values of ml: −1, 0, and +1.
If l = 2, there are five values of ml, namely, −2, −1, 0, +1, and +2.
If l = 3, there are seven values of ml, namely, −3, −2, −1, 0, +1, +2, and +3, and so on.
The number of ml values indicates the number of orbitals in a subshell with a particular l value. Therefore, each ml value refers to a different orbital.
Electron Spin Quantum Number (ms)
It specifies the orientation of the spin axis of an electron. An electron can spin in only one of two directions. There are two possible ways to represent ms values. They are +½ and ‒½. One electron spins in the clockwise direction. Another electron spins in the anticlockwise direction. But, no two electrons should have the same spin quantum number.
Pauli Exclusion Principle
No two electrons in an atom should have the four same quantum numbers. Two electrons are occupied in an atomic orbital because there are two possible values of ms. As an orbital can contain a maximum of only two electrons, the two electrons must have opposing spins. If two electrons have the same values of n, l and ml values, they should have different values of ms.
To find: Count the total number of electrons which can occupy in one d-orbital
Find the value of ‘l’ for one d-orbital
If the angular momentum quantum number (l) is 2, it corresponds to a d subshell for the principal quantum number (n) of 3 or greater values.
Find the value of ‘ml’ for one d-orbital
If l = 2, the magnetic quantum number (ml) has the five possible ways such as −2, −1, 0, +1 and +2 values. It corresponds to five d-subshells.
Count the electrons in one d-orbital.
Answer to Problem 3.96QP
The total number of electrons which can occupy in one d-orbital is 10 (c).
Explanation of Solution
There are five d-subshells in every d-orbitals. In one subshell, there are two electrons are occupied. In d-orbital, (5 × 2) = 10 electrons are occupied. Therefore, the total number of electrons which can occupy in one d-orbital is 10.
(d)

Interpretation:
The total number of electrons which can occupy in s, p, d and f-orbitals should be identified using the concept of quantum numbers.
Concept Introduction
Quantum Numbers
Quantum numbers are explained for the distribution of electron density in an atom. They are derived from the mathematical solution of Schrodinger’s equation for the hydrogen atom. The types of quantum numbers are the principal quantum number (n), the angular momentum quantum number (l), the magnetic quantum number (ml) and the electron spin quantum number (ms). Each atomic orbital in an atom is categorized by a unique set of the quantum numbers.
Principal Quantum Number (n)
The principal quantum number (n) assigns the size of the orbital and specifies the energy of an electron. If the value of n is larger, then the average distance of an electron in the orbital from the nucleus will be greater. Therefore the size of the orbital is large. The principal quantum numbers have the integral values of 1, 2, 3 and so forth and it corresponds to the quantum number in Bohr’s model of the hydrogen atom. If all orbitals have the same value of ‘n’, they are said to be in the same shell (level). The total number of orbitals for a given n value is n2. As the value of ‘n’ increases, the energy of the electron also increases.
Angular Momentum Quantum Number (l)
The angular momentum quantum number (l) explains the shape of the atomic orbital. The values of l are integers which depend on the value of the principal quantum number, n. For a given value of n, the possible values of l range are from 0 to n − 1. If n = 1, there is only one possible value of l (l=0). If n = 2, there are two values of l: 0 and 1. If n = 3, there are three values of l: 0, 1, and 2. The value of l is selected by the letters s, p, d, and f. If l = 0, we have an s orbital; if l = 1, we have a p orbital; if l = 2, we have a d orbital and finally if l = 3, we have a f orbital. A collection of orbitals with the same value of n is called a shell. One or more orbitals with the same n and l values are referred to a subshell (sublevel). The value of l also has a slight effect on the energy of the subshell; the energy of the subshell increases with l (s < p < d < f).
Magnetic Quantum Number (ml)
The magnetic quantum number (ml) explains the orientation of the orbital in space. The value of ml depends on the value of l in a subshell. This number divides the subshell into individual orbitals which hold the electrons. For a certain value of l, there are (2l + 1) integral values of ml which is explained as follows:
ml = ‒ l, ..., 0, ..., +l
If l = 0, there is only one possible value of ml: 0.
If l = 1, then there are three values of ml: −1, 0, and +1.
If l = 2, there are five values of ml, namely, −2, −1, 0, +1, and +2.
If l = 3, there are seven values of ml, namely, −3, −2, −1, 0, +1, +2, and +3, and so on.
The number of ml values indicates the number of orbitals in a subshell with a particular l value. Therefore, each ml value refers to a different orbital.
Electron Spin Quantum Number (ms)
It specifies the orientation of the spin axis of an electron. An electron can spin in only one of two directions. There are two possible ways to represent ms values. They are +½ and ‒½. One electron spins in the clockwise direction. Another electron spins in the anticlockwise direction. But, no two electrons should have the same spin quantum number.
Pauli Exclusion Principle
No two electrons in an atom should have the four same quantum numbers. Two electrons are occupied in an atomic orbital because there are two possible values of ms. As an orbital can contain a maximum of only two electrons, the two electrons must have opposing spins. If two electrons have the same values of n, l and ml values, they should have different values of ms.
To find: Count the total number of electrons which can occupy in one f-orbital
Find the value of ‘l’ for one f-orbital
If the angular momentum quantum number (l) is 3, it corresponds to a f subshell for the principal quantum number (n) of 4 or greater values.
Find the value of ‘ml’ for one f-orbital.
Answer to Problem 3.96QP
The total number of electrons which can occupy in one f-orbital is 14 (d).
Explanation of Solution
If l = 3, the magnetic quantum number (ml) has the seven possible ways such as −3, −2, −1, 0, +1, +2 and +3 values. It corresponds to seven f-subshells.
Count the electrons in one f-orbital
There are seven f-subshells in every f-orbitals. In one subshell, there are two electrons are occupied. In f-orbital, (7 × 2) = 14 electrons are occupied. Therefore, the total number of electrons which can occupy in one f-orbital is 14.
Want to see more full solutions like this?
Chapter 3 Solutions
Chemistry Atoms First, Second Edition
- > Can the molecule on the right-hand side of this organic reaction be made in good yield from no more than two reactants, in one step, by moderately heating the reactants? esc ? A O O •If your answer is yes, then draw the reactant or reactants in the drawing area below. You can draw the reactants in any arrangement you like. • If your answer is no, check the box under the drawing area instead. olo 18 Ar Explanation Check BB Click and drag to start drawing a structure. 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center Accessibilityarrow_forwardName the structurearrow_forward> For each pair of substrates below, choose the one that will react faster in a substitution reaction, assuming that: 1. the rate of substitution doesn't depend on nucleophile concentration and 2. the products are a roughly 50/50 mixture of enantiomers. Substrate A Substrate B Faster Rate X CI (Choose one) (Choose one) CI Br Explanation Check Br (Choose one) C 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy A F10arrow_forward
- How to draw this mechanism for the foloowing reaction in the foto. thank youarrow_forwardPredict the major products of the following organic reaction: Some important notes: CN A? • Draw the major product, or products, of the reaction in the drawing area below. • If there aren't any products, because no reaction will take place, check the box below the drawing area instead. • Be sure to use wedge and dash bonds when necessary, for example to distinguish between major products that are enantiomers. No reaction. Explanation Check Click and drag to start drawing a structure. 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use Privacy Centerarrow_forwardDraw the major product of the following reaction. Do not draw inorganic byproducts. H3PO4 OHarrow_forward
- Predict the major products of this organic reaction: HBr (1 equiv) Δ ? Some important notes: • Draw the major product, or products, of this reaction in the drawing area below. • You can draw the products in any arrangement you like. • Pay careful attention to the reaction conditions, and only include the major products. • Be sure to use wedge and dash bonds when necessary, for example to distinguish between major products that are enantiomers. • Note that there is only 1 equivalent of HBr reactant, so you need not consider the case of multiple additions. Explanation Check X ©2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacyarrow_forwardFor the structure below, draw the resonance structure that is indicated by the curved arrow(s). Be sure to include formal charges. :ÖH Modify the second structure given to draw the new resonance structure. Include lone pairs and charges in your structure. Use the + and - tools to add/remove charges to an atom, and use the single bond tool to add/remove double bonds.arrow_forwardUsing the table of Reactants and Products provided in the Hints section, provide the major product (with the correct stereochemistry when applicable) for questions below by selecting the letter that corresponds to the exact chemical structures for the possible product. OH conc Hydrochloric acid 40°C Temp A/arrow_forward
- Using arrows to designate the flow of electrons, complete the reaction below and provide a detailed mechanism for the formation of the product OH conc Hydrochloric acid 40°C Temp All chemical structures should be hand drawn on a piece of paper Paragraph BI UAE +varrow_forwarddraw out the following structures plesearrow_forwardDraw everything on a piece of paper outlining the synthesis from acetaldehyde to 2 cyclopentene carboxaldehyde using carbon based reagants with 3 carbons or fewers. Here is the attached image.arrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningLiving By Chemistry: First Edition TextbookChemistryISBN:9781559539418Author:Angelica StacyPublisher:MAC HIGHERGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage Learning





