A First Course In Probability, Global Edition
10th Edition
ISBN: 9781292269207
Author: Ross, Sheldon
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 3, Problem 3.96P
Suppose in the preceding problem that
a. Find the probability that worker 1 is assigned to the first incoming job.
b. Given that worker 1 is assigned to the first job, find the conditional probability that worker 2 was qualified for that job.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
When a tennis player serves, he gets two chances to serve in bounds. If he fails to do so twice, he loses the point. If he
attempts to serve an ace, he serves in bounds with probability 3/8.If he serves a lob, he serves in bounds with probability
7/8. If he serves an ace in bounds, he wins the point with probability 2/3. With an in-bounds lob, he wins the point with
probability 1/3. If the cost is '+1' for each point lost and '-1' for each point won, the problem is to determine the optimal
serving strategy to minimize the (long-run)expected average cost per point. (Hint: Let state 0 denote point over,two
serves to go on next point; and let state 1 denote one serve left.
(1). Formulate this problem as a Markov decision process by identifying the states and decisions and then finding the
Cik.
(2). Draw the corresponding state action diagram.
(3). List all possible (stationary deterministic) policies.
(4). For each policy, find the transition matrix and write an expression for the…
During each time period, a potential customer arrives at a restaurant with probability 1/2. If there are already two people
at the restaurant (including the one being served), the potential customer leaves the restaurant immediately and never
returns. However, if there is one person or less, he enters the restaurant and becomes an actual customer. The manager
has two types of service configurations available. At the beginning of each period, a decision must be made on which
configuration to use. If she uses her "slow" configuration at a cost of $3 and any customers are present during the period,
one customer will be served and leave with probability 3/5. If she uses her "fast" configuration at a cost of $9 and any
customers are present during the period, one customer will be served and leave with probability 4/5. The probability of
more than one customer arriving or more than one customer being served in a period is zero. A profit of $50 is earned
when a customer is served. The manager…
Every Saturday night a man plays poker at his home with the same group of friends. If he provides refreshments for the
group (at an expected cost of $14) on any given Saturday night, the group will begin the following Saturday night in a
good mood with probability 7/8 and in a bad mood with probability 1/8. However, if he fail to provide refreshments, the
group will begin the following Saturday night in a good mood with probability 1/8 and in a bad mood with probability
7/8 regardless of their mood this Saturday. Furthermore, if the group begins the night in a bad mood and then he fails
to provide refreshments, the group will gang up on him so that he incurs expected poker losses of $75. Under other
circumstances he averages no gain or loss on his poker play. The man wishes to find the policy regarding when to
provide refreshments that will minimize his (long-run) expected average cost per week.
(1). Formulate this problem as a Markov decision process by identifying the states and…
Chapter 3 Solutions
A First Course In Probability, Global Edition
Ch. 3 - Two fair dice are rolled. What is the conditional...Ch. 3 - If two fair dice are rolled, what is the...Ch. 3 - Use Equation (2.1) to compute in a hand of bridge...Ch. 3 - What is the probability that at least one of a...Ch. 3 - An urn contains 6 white and 9 black balls. If 4...Ch. 3 - Consider an urn containing 12 balls, of which 8...Ch. 3 - The king comes from a family of 2 children. What...Ch. 3 - A couple has 2 children. What is the probability...Ch. 3 - Consider 3 urns. Urn A contains 2 white and 4 red...Ch. 3 - Three cards are randomly selected, without...
Ch. 3 - Two cards are randomly chosen without replacement...Ch. 3 - Suppose distinct values are written on each of 3...Ch. 3 - A recent college graduate is planning to take the...Ch. 3 - Suppose that an ordinary deck of 52 cards (which...Ch. 3 - An urn initially contains 5 white and 7 black...Ch. 3 - An ectopic pregnancy is twice as likely to develop...Ch. 3 - Ninety-eight percent of all babies survive...Ch. 3 - In a certain community, 36 percent of the families...Ch. 3 - A total of 46 percent of the voters in a certain...Ch. 3 - A total of 4.8 percent of the women and 37 percent...Ch. 3 - Fifty-two percent of the students at a certain...Ch. 3 - A total of 500 married working couples were polled...Ch. 3 - A red die, a blue die, and a yellow die (all six...Ch. 3 - Urn I contains 2 white and 4 red balls, whereas...Ch. 3 - Twenty percent of Bs phone calls are with her...Ch. 3 - Each of 2 balls is painted either black or gold...Ch. 3 - The following method was proposed to estimate the...Ch. 3 - Suppose that 5 percent of men and 0.25 percent of...Ch. 3 - All the workers at a certain company drive to work...Ch. 3 - Suppose that an ordinary deck of 52 cards is...Ch. 3 - There are 15 tennis balls in a box, of which 9...Ch. 3 - Consider two boxes, one containing 1 black and 1...Ch. 3 - Ms. Aquina has just had a biopsy on a possibly...Ch. 3 - A family has j children with probability pj, where...Ch. 3 - On rainy days, Joe is late to work with...Ch. 3 - In Example 31, suppose that the new evidence is...Ch. 3 - With probability .6, the present was hidden by...Ch. 3 - Stores A, B, and C have 50, 75, and 100 employees,...Ch. 3 - a. A gambler has a fair coin and a two-headed coin...Ch. 3 - Urn A has 5 white and 7 black balls. Urn B has 3...Ch. 3 - In Example 3a, what is the probability that...Ch. 3 - Consider a sample of size 3 drawn in the following...Ch. 3 - A deck of cards is shuffled and then divided into...Ch. 3 - Twelve percent of all U.S. households are In...Ch. 3 - There are 3 coins in a box. One is a two-headed...Ch. 3 - Three prisoners are informed by their jailer that...Ch. 3 - There is a 30 percent chance that A can fix her...Ch. 3 - In any given year, a male automobile policyholder...Ch. 3 - An urn contains 5 white and 10 black balls. A fair...Ch. 3 - Each of 2 cabinets identical n appearance has 2...Ch. 3 - Prostate cancer is the most common type of cancer...Ch. 3 - Suppose that an insurance company classifies...Ch. 3 - A worker has asked her supervisor for a letter of...Ch. 3 - Players A, B, C, D are randomly lined up. The...Ch. 3 - Players 1,2,3 are playing a tournament. Two of...Ch. 3 - Suppose there are two coins, with coin 1 landing...Ch. 3 - In a 7 game series played with two teams, the...Ch. 3 - A parallel system functions whenever at least one...Ch. 3 - If you had to construct a mathematical model for...Ch. 3 - In a class, there are 4 first-year boys, 6...Ch. 3 - Suppose that you continually collect coupons and...Ch. 3 - A simplified model for the movement of the price...Ch. 3 - Suppose that we want to generate the outcome of...Ch. 3 - Independent flips of a coin that lands on heads...Ch. 3 - The color of a persons eyes is determined by a...Ch. 3 - Genes relating to albinism are denoted by A and a....Ch. 3 - Barbara and Dianne go target shooting Suppose that...Ch. 3 - A and B are involved in a duel. The rules of the...Ch. 3 - Assume, as in Example 3h, that 64 percent of twins...Ch. 3 - The probability of the closing of the ith relay in...Ch. 3 - An engineering system consisting of n components...Ch. 3 - In Problem 3.70a, find the conditional probability...Ch. 3 - A certain organism possesses a pair of each of 5...Ch. 3 - There is a 50—50 chance that the queen carries...Ch. 3 - A town council of 7 members contains a steering...Ch. 3 - Suppose that each child born to a couple is...Ch. 3 - A and B alternate rolling a pair of dice, stopping...Ch. 3 - In a certain village, it is traditional for the...Ch. 3 - Prob. 3.79PCh. 3 - Consider an unending sequence of independent...Ch. 3 - A and B play a series of games. Each game is...Ch. 3 - In successive rolls of a pair of fair dice, what...Ch. 3 - In a certain contest, the players are of equal...Ch. 3 - An investor owns shares in a stock whose present...Ch. 3 - A and B flip coins. A starts and continues...Ch. 3 - Die A has 4 red and 2 white faces, whereas die B...Ch. 3 - An urn contains 12 balls, of which 4 are white....Ch. 3 - Repeat Problem 3.87 when each of the 3 players...Ch. 3 - Let S={1,2,...,n} and suppose that A and B are,...Ch. 3 - Consider an eight team tournament with the format...Ch. 3 - Consider Example 2a, but now suppose that when the...Ch. 3 - In Example 5, what is the conditional probability...Ch. 3 - In Laplace s rule of succession (Example 5e ), are...Ch. 3 - A person tried by a 3-judge panel is declared...Ch. 3 - Each of n workers is independently qualified to do...Ch. 3 - Suppose in the preceding problem that n=2 and that...Ch. 3 - Each member of a population of size n is,...Ch. 3 - Show that if P(A)0, then P(ABA)P(ABAB)Ch. 3 - Prob. 3.2TECh. 3 - Consider a school community of m families, with ni...Ch. 3 - A ball is in any one of n boxes and is in the ith...Ch. 3 - a. Prove that if E and F are mutually exclusive,...Ch. 3 - Prove that if E1,E2,...,En are independent events,...Ch. 3 - a. An urn contains n white and m black balls. The...Ch. 3 - Let A, B, and C, be events relating to the...Ch. 3 - Consider two independent tosses of a fair coin....Ch. 3 - Two percent of women age 45 who participate in...Ch. 3 - In each of n independent tosses of a coin, the...Ch. 3 - Show that 0ai1,i=1,2,..., then...Ch. 3 - The probability of getting a head on a single toss...Ch. 3 - Suppose that you are gambling against an...Ch. 3 - Independent trials that result in a success with...Ch. 3 - Independent trials that result in a success with...Ch. 3 - Suppose that n independent trials are performed,...Ch. 3 - Let Q. denote the probability that no run of 3...Ch. 3 - Consider the gamblers ruin problem, with the...Ch. 3 - Prob. 3.20TECh. 3 - The Ballot Problem. In an election, candidate A...Ch. 3 - As a simplified model for weather forecasting,...Ch. 3 - A bag contains a white and b black balls. Balls...Ch. 3 - A round-robin tournament of n contestants is a...Ch. 3 - Prove directly thatP(EF)=P(EFG)P(GF)+P(EFGC)P(GCF)Ch. 3 - Prove the equivalence of Equations (5.11) and...Ch. 3 - Prob. 3.27TECh. 3 - Prove or give a counterexample, if E1 and E2 are...Ch. 3 - In Laplaces rule of succession (Example 5e ), show...Ch. 3 - In Laplaces rule of succession (Example 5e),...Ch. 3 - Suppose that a nonmathematical, but...Ch. 3 - In a game of bridge, West has no aces What is the...Ch. 3 - Prob. 3.2STPECh. 3 - How can 20 balls, 10 white and 10 black, be put...Ch. 3 - Prob. 3.4STPECh. 3 - An urn has r red and w white balls that are...Ch. 3 - An urn contains b black balls and r red balls. One...Ch. 3 - A friend randomly chooses two cards, without...Ch. 3 - Show that P(HE)P(GE)=P(H)P(G)P(EH)P(EG). Suppose...Ch. 3 - You ask your neighbor to water a sickly plant...Ch. 3 - Six balls are to be randomly chosen from an urn...Ch. 3 - A type C battery is in working condition with...Ch. 3 - Prob. 3.12STPECh. 3 - Balls are randomly removed from an urn that...Ch. 3 - A coin having probability .8 of landing on heads...Ch. 3 - In a certain species of rats, black dominates over...Ch. 3 - a. In Problem 3.70b, find the probability that a...Ch. 3 - For the k-out-of-n system described in Problem...Ch. 3 - Prob. 3.18STPECh. 3 - Prob. 3.19STPECh. 3 - Suppose that there are n possible outcomes of a...Ch. 3 - If A flips vand B flips n fair coins, show that...Ch. 3 - Prove or give counterexamples to the following...Ch. 3 - Let A and B be events having positive probability....Ch. 3 - Rank the following from most likely to least...Ch. 3 - Two local factories, A and B, produce radios. Each...Ch. 3 - Show that if P(AB)=1, then P(BCAC)=1Ch. 3 - Prob. 3.27STPECh. 3 - A total of 2n cards, of which 2 are aces, are to...Ch. 3 - There are n distinct types of coupons, and each...Ch. 3 - Show that for any events E and F,P(EEF)P(EF) Hint:...Ch. 3 - a. If the odds of A is 23, what is the probability...Ch. 3 - Prob. 3.32STPECh. 3 - If the events E, F, G are independent. show that...Ch. 3 - Players 1,2,3, are in a contest. Two of them are...Ch. 3 - If 4 balls are randomly chosen from an urn...Ch. 3 - In a 4 player tournament, player 1 plays player 2,...Ch. 3 - In a tournament Involving players 1,..., n,...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, probability and related others by exploring similar questions and additional content below.Similar questions
- This year Amanda decides to invest in two different no-load mutual funds: the G Fund or the L Mutual Fund. At the end of each year, she liquidates her holdings, takes her profits, and then reinvests. The yearly profits of the mutual funds depend on where the market stood at the end of the preceding year. Recently the market has been oscillating around level 2 from one year end to the next, according to the probabilities given in the following transition matrix : L1 L2 L3 L1 0.2 0.4 0.4 L2 0.1 0.4 0.5 L3 0.3 0.3 0.4 Each year that the market moves up (down) 1 level, the G Fund has profits (losses) of $20k, while the L Fund has profits (losses) of $10k. If the market moves up (down) 2 level in a year, the G Fund has profits (losses) of $50k, while the L Fund has profits (losses) of only $20k. If the market does not change, there is no profit or loss for either fund. Amanda wishes to determine her optimal investment policy in order to maximize her (long-run) expected average profit per…arrow_forwardSolve this questions pleasearrow_forwardQuestion 1: Let X be a random variable with p.m.f (|x| +1)² x= -2, -1, 0, 1,2 f(x) = C 0, O.W 1. The value of c. 2. The c.d.f. 3. E(X). 4. E(2x+3). 5. E(X²). 6. E(3x²+4). 7. E(X(3X+4)). 8. Var(X). 9. Var (6-3X). 10. Find the m.g.f of the random variable Xarrow_forward
- Please could you explain how to do integration by parts for this question in detail pleasearrow_forward2. Claim events on a portfolio of insurance policies follow a Poisson process with parameter A. Individual claim amounts follow a distribution X with density: f(x)=0.0122re001, g>0. The insurance company calculates premiums using a premium loading of 45%. (a) Derive the moment generating function Mx(t).arrow_forwardX GG G + C td.bksblive2.com.au/bksblive2/Play... E R New Chrome available CANVAS gmetrix N notion Six big immigratio... >>> All Bookmarks 1.1 ACSF L5 SC Geometry and Measure: Vectors Vectors State the vector quantities shown on the image below. AB = CD' = A B D < C 80 esc F1 F2 F3 F4 ? Help 7arrow_forward
- 2. Claim events on a portfolio of insurance policies follow a Poisson process with parameter A. Individual claim amounts follow a distribution X with density: f(x)=0.0122re001, g>0. The insurance company calculates premiums using a premium loading of 45%. (a) Derive the moment generating function Mx(t).arrow_forward2. Claim events on a portfolio of insurance policies follow a Poisson process with parameter A. Individual claim amounts follow a distribution X with density: f(x)=0.0122re001, g>0. The insurance company calculates premiums using a premium loading of 45%. (a) Derive the moment generating function Mx(t).arrow_forwardQ2 H let x(+) = &cos (Ait+U) and. 4(+) = ß cos(12t +V), where d. B. 1. In Constants and U,V indep.rus have uniform dist. (-π,π) Show that: ①Rxy (+,4+1)=0 @ Rxy (++) = cos [ when U=V Q3 let x(t) is stochastic process with Wss -121 e, and Rx ltst+1) = ( 2, show that E(X) = E(XS-X₁)² = 2(-1). Qu let x(t) = U Cost + (V+1) Sint, tεIR. where UV indep.rus, and let E (U)-E(V)=0 and E(U) = E(V) = 1, show that Cov (Xt, Xs) = K (t,s) = cos(s-t) X(+) is not WSS.arrow_forward
- Patterns in Floor Tiling A square floor is to be tiled with square tiles as shown. There are blue tiles on the main diagonals and red tiles everywhere else. In all cases, both blue and red tiles must be used. and the two diagonals must have a common blue tile at the center of the floor. If 81 blue tiles will be used, how many red tiles will be needed? For what numbers in place of 81 would this problem still be solvable? Find an expression in k giving the number of red tiles required in general.arrow_forwardAt a BBQ, you can choose to eat a burger, hotdog or pizza. you can choose to drink water, juice or pop. If you choose your meal at random, what is the probability that you will choose juice and a hot dog? What is the probability that you will not choose a burger and choose either water or pop?arrow_forwarda card is drawn from a standard deck of 52 cards. If a card is choosen at random, what is the probability that the card is a)heart b)a face card or c)a spade or 10arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageAlgebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningCollege Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage Learning
- Elements Of Modern AlgebraAlgebraISBN:9781285463230Author:Gilbert, Linda, JimmiePublisher:Cengage Learning,College AlgebraAlgebraISBN:9781305115545Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage

Algebra and Trigonometry (MindTap Course List)
Algebra
ISBN:9781305071742
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning

College Algebra (MindTap Course List)
Algebra
ISBN:9781305652231
Author:R. David Gustafson, Jeff Hughes
Publisher:Cengage Learning


Elements Of Modern Algebra
Algebra
ISBN:9781285463230
Author:Gilbert, Linda, Jimmie
Publisher:Cengage Learning,

College Algebra
Algebra
ISBN:9781305115545
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning
Probability & Statistics (28 of 62) Basic Definitions and Symbols Summarized; Author: Michel van Biezen;https://www.youtube.com/watch?v=21V9WBJLAL8;License: Standard YouTube License, CC-BY
Introduction to Probability, Basic Overview - Sample Space, & Tree Diagrams; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=SkidyDQuupA;License: Standard YouTube License, CC-BY