Consider Example 2a, but now suppose that when the key is in a certain pocket, there is a 10 percent chance that a search of that pocket will not find the key. Let R and L be, respectively, the events that the key is in the right-hand pocket of the jacket and that it is in the left-hand pocket. Also, let S R be the event that a search of the right-hand jacket pocket will be successful in finding the key, and let U L be the event that a search of the left-hand jacket pocket will be unsuccessful and, thus, not find the key. Find P ( S R | U L ) , the conditional probability that a search of the right-hand pocket will find the key given that a search of the left-hand pocket did not, by a. using the identity P ( S R | U L ) = P ( S R U L ) P ( U L ) determining P ( S R U L ) by conditioning on whether or not the key is in the right-hand pocket, and determining P ( U L ) by conditioning on whether or not the key is in the left-hand pocket; b. using the identity P ( S R | U L ) = P ( S R | R U L ) P ( R | U L ) + P ( S R | R C U L ) P ( R c U L )
Consider Example 2a, but now suppose that when the key is in a certain pocket, there is a 10 percent chance that a search of that pocket will not find the key. Let R and L be, respectively, the events that the key is in the right-hand pocket of the jacket and that it is in the left-hand pocket. Also, let S R be the event that a search of the right-hand jacket pocket will be successful in finding the key, and let U L be the event that a search of the left-hand jacket pocket will be unsuccessful and, thus, not find the key. Find P ( S R | U L ) , the conditional probability that a search of the right-hand pocket will find the key given that a search of the left-hand pocket did not, by a. using the identity P ( S R | U L ) = P ( S R U L ) P ( U L ) determining P ( S R U L ) by conditioning on whether or not the key is in the right-hand pocket, and determining P ( U L ) by conditioning on whether or not the key is in the left-hand pocket; b. using the identity P ( S R | U L ) = P ( S R | R U L ) P ( R | U L ) + P ( S R | R C U L ) P ( R c U L )
Solution Summary: The author calculates the conditional probability by using the identity P(S_R|U
Consider Example 2a, but now suppose that when the key is in a certain pocket, there is a 10 percent chance that a search of that pocket will not find the key. Let R and L be, respectively, the events that the key is in the right-hand pocket of the jacket and that it is in the left-hand pocket. Also, let
S
R
be the event that a search of the right-hand jacket pocket will be successful in finding the key, and let
U
L
be the event that a search of the left-hand jacket pocket will be unsuccessful and, thus, not find the key. Find
P
(
S
R
|
U
L
)
, the conditional probability that a search of the right-hand pocket will find the key given that a search of the left-hand pocket did not, by
a. using the identity
P
(
S
R
|
U
L
)
=
P
(
S
R
U
L
)
P
(
U
L
)
determining
P
(
S
R
U
L
)
by conditioning on whether or not the key is in the right-hand pocket, and determining
P
(
U
L
)
by conditioning on whether or not the key is in the left-hand pocket;
b. using the identity
P
(
S
R
|
U
L
)
=
P
(
S
R
|
R
U
L
)
P
(
R
|
U
L
)
+
P
(
S
R
|
R
C
U
L
)
P
(
R
c
U
L
)
Q1. A group of five applicants for a pair of identical jobs consists of three men and two
women. The employer is to select two of the five applicants for the jobs. Let S
denote the set of all possible outcomes for the employer's selection. Let A denote
the subset of outcomes corresponding to the selection of two men and B the subset
corresponding to the selection of at least one woman. List the outcomes in A, B,
AUB, AN B, and An B. (Denote the different men and women by M₁, M2, M3
and W₁, W2, respectively.)
Q3 (8 points)
Q3. A survey classified a large number of adults according to whether they were diag-
nosed as needing eyeglasses to correct their reading vision and whether they use
eyeglasses when reading. The proportions falling into the four resulting categories
are given in the following table:
Use Eyeglasses for Reading
Needs glasses Yes
No
Yes
0.44
0.14
No
0.02
0.40
If a single adult is selected from the large group, find the probabilities of the events
defined below. The adult
(a) needs glasses.
(b) needs glasses but does not use them.
(c) uses glasses whether the glasses are needed or not.
4. (i) Let a discrete sample space be given by
N = {W1, W2, W3, W4},
and let a probability measure P on be given by
P(w1) = 0.2, P(w2) = 0.2, P(w3) = 0.5, P(wa) = 0.1.
Consider the random variables X1, X2 → R defined by
X₁(w1) = 1, X₁(w2) = 2,
X2(w1) = 2, X2 (w2) = 2,
Find the joint distribution of X1, X2.
(ii)
X1(W3) = 1, X₁(w4) = 1,
X2(W3) = 1, X2(w4) = 2.
[4 Marks]
Let Y, Z be random variables on a probability space (, F, P).
Let the random vector (Y, Z) take on values in the set [0, 1] x [0,2] and let the
joint distribution of Y, Z on [0, 1] x [0,2] be given by
1
dPy,z (y, z) ==(y²z+yz2) dy dz.
harks 12 Find the distribution Py of the random variable Y.
[8 Marks]
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, probability and related others by exploring similar questions and additional content below.
Discrete Distributions: Binomial, Poisson and Hypergeometric | Statistics for Data Science; Author: Dr. Bharatendra Rai;https://www.youtube.com/watch?v=lHhyy4JMigg;License: Standard Youtube License