(a)
Interpretation:
The value of
Concept Introduction :
To find the values of
For critical conditions,
For Redlich/Kwong equation of state,
(a)

Answer to Problem 3.85P
Explanation of Solution
Given information:
The general expressions for
And
The general cubic equation of state may itself be written for the critical conditions, from equation (1) at critical conditions,
Now replace five unknowns
Taking L.C.M
Divide the whole equation by
Rearrange,
In terms of non-critical condition
The above equation is similar as
And
Now, the three general derived equations are the term of critical temperature, pressure and volume. Three equations and we will have five unknowns
From equation
Divide by
Since,
Gives
From equation
Divide by
Since,
Gives
Or,
Or,
Or
From equation
Divide by
Since,
Gives
Or,
Or
Or,
For Redlich/Kwong equation of state,
Put values in equation (2) (3) and (4),
Put values in equation (3),
Put values in equation (4),
From equation
After solving cubic equation, roots of
Since value of
And
Hence proved.
(b)
Interpretation:
The value of
Concept Introduction :
To find the values of
For critical conditions,
For Soave/Redlich/Kwong equation of state,
(b)

Answer to Problem 3.85P
Explanation of Solution
Given information:
The general expressions for
And
For Soave/Redlich/Kwong equation of state,
Put values in general equation (2) (3) and (4) found in subpart (1),
Put values in equation (3),
Put values in equation (4),
From equation
After solving cubic equation, roots of
Since value of
And
Hence proved.
(c)
Interpretation:
The value of
Concept Introduction :
To find the values of
For critical conditions,
For Peng/Robinson equation of state,
(c)

Answer to Problem 3.85P
Explanation of Solution
Given information:
The general expressions for
And
For Peng/Robinson equation of state,
Put values in general equation (2) (3) and (4) found in subpart (1),
Put values in equation (3),
Put
Put values in equation (4),
From equation 4
Put value in equation 5
After solving cubic equation, roots of
Since value of
And
And
Hence proved.
Want to see more full solutions like this?
Chapter 3 Solutions
INTRO.TO CHEM.ENGR.THERMO.-EBOOK>I<
- Estimate the LFL and UFL for propylene using Equations 6-10 and 6-11 in the textbook,and compare these to the experimental values given in the table in Appendix B.arrow_forward1. Determine the minimum compression ratio required to raise the temperature of air overhexane to its AIT. Assume an initial temperature of 20°C.2. Ethanol is kept in a storage vessel that is vented with air (at 25°C and 1 atm). Is theequilibrium mixture of vapor above the liquid and air flammable? What if the liquid isacetone instead?arrow_forwardHydrogenation of Ethylbenzene to Styrene Reaction: C₈H₁₀ → C₈H₈ + H₂ΔHᵣ°(300°C) = -124 kJ/mol (exact value unknown) Process Description: The basis is 1000 kg/h of separated styrene. The reaction conversion rate is 35%. The temperature increase in heat exchanger 2 is adiabatic. A fresh stream of pure ethylbenzene (25°C) enters a mixing vessel, where it is combined with a recycle stream (from the distillation column, as explained later), which also consists of pure ethylbenzene at 25°C. After mixing, the stream is sent to a heat exchanger (HX1), where the mixture is heated to 200°C. Next, the mixture enters an adiabatic heat exchanger (HX2), where it is further heated to 300°C by adding steam (at 350°C). This steam is used to prevent side reactions and carbon deposition in the reactor. The heated mixture is then fed into the reactor, where the reaction takes place with a conversion rate of 35%. As a result, the mixture cools down to 260°C. The resulting mixture is then sent to HX4, where…arrow_forward
- Chemical Engineering Questionarrow_forward4.5arrow_forwardPhosphoric acid (H3PO4) is a triprotic acid. Na2HPO4 is added to deionized water at a concentration of 0.02 M. A. Write the mass balance for this solution B. Write the charge balance for this solution C. Write the proton condition for this solutionarrow_forward
- 4.10arrow_forward4.16 aarrow_forward8. The thermal decomposition of nitric oxide at elevated temperatures 2NO → N₂+02 has been studied in a batch reactor where at temperatures below 2000K the rate expression that applies to low conversions is: r = kCm05 Co At high conversions, or when the initial mixture contains a high concentration of O2 the rate expression is given by: r = k' Cм0.5 C15C0,5 To explain these kinetics the following chain reaction mechanism has been proposed: Initiation: Propagation: 2NON₂O +0 k₂ E1=272.0 kJ/mol 0+ NO O₂+ N E₂-161.0 kJ/mol N+NO N₂+0 E3-1.4 kJ/mol K4 20+ MO₂+M E4=14.0 kJ/mol ks Termination: where M is any molecule capable of the energy transfer necessary to stabilize the oxygen molecule. Once appreciable amounts of O2 are present in the reaction mixture, the initiation reaction that is the primary source of atomic oxygen is no longer the first reaction. Instead, the following reaction begins to dominate the chain initiation process: Initiation (high O2): ks NO +0₂ NO₂+0 E5=198.0 kJ/mol a.…arrow_forward
- 2:41 2) If the number-average degree of polymerization for styrene obtained by the bulk polymerization at 25°C is 5,000, what would be the number-average degree of polymerization if conducted in a 10% solution in toluene (900g of toluene per 100 g of styrene) under otherwise identical conditions? State any assumptions that are needed. (see Table 2-4). Table 2-4 Representative Values of Chain-Transfer Constants Monomer Styrene Chain-Transfer Agent T (°C) C x 104 Styrene 25 bas 0.279 * 50 0.35-0.78 Polystyrene 50 1.9-16.6 Benzoyl peroxide 50 0.13 Toluene 60 0.125 Methyl methacrylate Methyl methacrylate 30 0.117 70 0.2 Poly(methyl methacrylate) 50 0.22-1000 Benzoyl peroxide 50 0.01 Toluene 40 0.170 3) 2 3) Methyl methacrylate is copolymerized with 2-methylbenzyl methacrylate (M₁) in 1,4- dioxane at 60°C using AIBN as the free-radical initiator. (a) Draw the repeating unit of poly(2-methylbenzyl methacrylate). (b) From the data given in the table below, estimate the reactivity ratios of…arrow_forwardA piston–cylinder device initially contains 0.6 m3 of saturated water vapor at 250 kPa. At this state, the piston is resting on a set of stops, and the mass of the piston is such that a pressure of 300 kPa is required to move it. Heat is now slowly transferred to the steam until the volume becomes 1 m3. Use the data from the steam tables. NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. Determine the final temperature. The final temperature is ºC. Determine the work done during this process Determine the total heat transferarrow_forwardConsider a mixture of carbon monoxide and water at 25°C:a. Does an azeotrope exist for this mixture at 25°C? If so, at what composition andpressure? If not, how do you know?b. If the total composition of the mixture is 10. mol% carbon monoxide, what will bethe pressure limits of VLE for this mixture at 25°C? show all the calculation stepsarrow_forward
- Introduction to Chemical Engineering Thermodynami...Chemical EngineeringISBN:9781259696527Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark SwihartPublisher:McGraw-Hill EducationElementary Principles of Chemical Processes, Bind...Chemical EngineeringISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEYElements of Chemical Reaction Engineering (5th Ed...Chemical EngineeringISBN:9780133887518Author:H. Scott FoglerPublisher:Prentice Hall
- Industrial Plastics: Theory and ApplicationsChemical EngineeringISBN:9781285061238Author:Lokensgard, ErikPublisher:Delmar Cengage LearningUnit Operations of Chemical EngineeringChemical EngineeringISBN:9780072848236Author:Warren McCabe, Julian C. Smith, Peter HarriottPublisher:McGraw-Hill Companies, The





