(a)
Interpretation:
Conjugate bases of given acids are needed to be drawn.
Concept introduction:
According to Bronsted-Lowry concept, acid is a proton donor. The deprotonated acids are called conjugate base. The stability of this conjugate base determines the location of deprotonation in an acid.
In a conjugate base where the negative charge is carried by a more electronegative atom will show more stability. The greater electronegativity makes lone pair closer to the nucleus hence more stabilized.
The conjugate base having resonance will have greater stability as compared to conjugate base having single anion. Because of the resonance conjugate base will get resonance stabilization.
(a)
Answer to Problem 36PP
Explanation of Solution
The most acidic proton of the given acid (a) is
(b)
Interpretation:
Conjugate bases of given acids are needed to be drawn.
Concept introduction:
According to Bronsted-Lowry concept, acid is a proton donor. The deprotonated acids are called conjugate base. The stability of this conjugate base determines the location of deprotonation in an acid.
In a conjugate base where the negative charge is carried by a more electronegative atom will show more stability. The greater electronegativity makes lone pair closer to the nucleus hence more stabilized.
The conjugate base having resonance will have greater stability as compared to conjugate base having single anion. Because of the resonance conjugate base will get resonance stabilization.
(b)
Answer to Problem 36PP
Explanation of Solution
The most acidic hydrogen atom presented in the given acid is
.
No other
(c)
Interpretation:
Conjugate bases of given acids are needed to be drawn.
Concept introduction:
According to Bronsted-Lowry concept, acid is a proton donor. The deprotonated acids are called conjugate base. The stability of this conjugate base determines the location of deprotonation in an acid.
In a conjugate base where the negative charge is carried by a more electronegative atom will show more stability. The greater electronegativity makes lone pair closer to the nucleus hence more stabilized.
The conjugate base having resonance will have greater stability as compared to conjugate base having single anion. Because of the resonance conjugate base will get resonance stabilization.
(c)
Answer to Problem 36PP
Explanation of Solution
Deprotonation of
(d)
Interpretation:
Conjugate bases of given acids are needed to be drawn.
Concept introduction:
According to Bronsted-Lowry concept, acid is a proton donor. The deprotonated acids are called conjugate base. The stability of this conjugate base determines the location of deprotonation in an acid.
In a conjugate base where the negative charge is carried by a more electronegative atom will show more stability. The greater electronegativity makes lone pair closer to the nucleus hence more stabilized.
The conjugate base having resonance will have greater stability as compared to conjugate base having single anion. Because of the resonance conjugate base will get resonance stabilization.
(d)
Answer to Problem 36PP
Explanation of Solution
Deprotonation of
(e)
Interpretation:
Conjugate bases of given acids are needed to be drawn.
Concept introduction:
According to Bronsted-Lowry concept, acid is a proton donor. The deprotonated acids are called conjugate base. The stability of this conjugate base determines the location of deprotonation in an acid.
In a conjugate base where the negative charge is carried by a more electronegative atom will show more stability. The greater electronegativity makes lone pair closer to the nucleus hence more stabilized.
The conjugate base having resonance will have greater stability as compared to conjugate base having single anion. Because of the resonance conjugate base will get resonance stabilization.
(e)
Answer to Problem 36PP
Explanation of Solution
The most acidic proton of the given acid (e) is
(f)
Interpretation:
Conjugate bases of given acids are needed to be drawn.
Concept introduction:
According to Bronsted-Lowry concept, acid is a proton donor. The deprotonated acids are called conjugate base. The stability of this conjugate base determines the location of deprotonation in an acid.
In a conjugate base where the negative charge is carried by a more electronegative atom will show more stability. The greater electronegativity makes lone pair closer to the nucleus hence more stabilized.
The conjugate base having resonance will have greater stability as compared to conjugate base having single anion. Because of the resonance conjugate base will get resonance stabilization.
(f)
Answer to Problem 36PP
Explanation of Solution
The most acidic proton of the given acid (e) is
(g)
Interpretation:
Conjugate bases of given acids are needed to be drawn.
Concept introduction:
According to Bronsted-Lowry concept, acid is a proton donor. The deprotonated acids are called conjugate base. The stability of this conjugate base determines the location of deprotonation in an acid.
In a conjugate base where the negative charge is carried by a more electronegative atom will show more stability. The greater electronegativity makes lone pair closer to the nucleus hence more stabilized.
The conjugate base having resonance will have greater stability as compared to conjugate base having single anion. Because of the resonance conjugate base will get resonance stabilization.
(g)
Answer to Problem 36PP
Explanation of Solution
Deprotonation of
Want to see more full solutions like this?
Chapter 3 Solutions
ORG.CHEM EBOOK W/BBWILEY PLUS>CUSTOM<
- How could you distinguish between each pair of compounds below using IR? For each pair citeone bond and it’s frequency that you could use to distinguish between them. Please provide thorough analysis to apply into further problems.arrow_forwardSteps and explanation please.arrow_forwardSteps and explanation on how to solve.arrow_forward
- Provide the unknown for the given data.arrow_forwardElectron Arrangement A. Fill in the following chart relating to levels, sublevels and orbitals. Levels (n) 1 Sublevels # of Orbitals per sublevel 2 3 4 # of Electrons per sublevel Total Electrons per level Complete: B. Answer the following questions related to levels, sublevels, orbitals and electrons. 1. How many sublevels are in energy level 2? 2. How many orbitals are in a 4f sublevel? 3. How many electrons can level 3 hold? 4. How many orbitals are in level 4? 5. How many electrons can sublevel 2p hold? 11arrow_forwardProvide the unknown for the given details.arrow_forward
- Part II. For the following compounds predict the no. Of signals expected for the 9) c) b d) C-NMR spectrum: لكمarrow_forwardIdentify the S and R configuration of all chiral centers.arrow_forward1) Draw the control charts for the following data and interpret the result and also develop control limts for future use. 24 samples are taken each with a subgroup size of 3. Don't Use the standard excel template and analyze.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY