
(a)
To determine:
The initial volume (in mL) to generate 10.0 L of 0.45 M solution from 3.0 M solution.
(a)

Explanation of Solution
Molarity is defined as the number of moles of solute in 1 L of solution.
The final solution is 0.45 M, i.e. it contains 0.45 moles of solute per 1000 mL solution. Thus, for 10.0 L solution, the number of moles would be:
To get 4.5 moles from 3.0 M initial solution, the volume of the solution required is calculated below:
The molarity of the initial solution is,
Therefore, knowing the molarity and volume of the desired final solution, and the molarity of the source (initial) solution, volume of the source (initial) solution required, can be calculated.
(b)
To determine:
The initial volume (in mL) to generate 1.50 L of 1.0 M solution from 11.7 M solution.
(b)

Explanation of Solution
Molarity is defined as the number of moles of solute in 1 L of solution.
The final solution is 1.0 M, i.e. it contains 1.0 moles of solute per 1.0 L solution. Thus, for 1.50 L solution, the number of moles would be:
To get 1.5 moles from 11.7 M initial solution, the volume of the solution required is calculated below:
The molarity of the initial solution is,
Therefore, knowing the molarity and volume of the desired final solution, and the molarity of the source (initial) solution, volume of the source (initial) solution required, can be calculated.
(c)
To determine:
(c)

Explanation of Solution
Molarity is defined as the number of moles of solute in 1 L of solution.
The final solution is 0.025 M, i.e. it contains 0.025 moles of solute per 1000mL solution. Thus, for 100.0mL solution, the number of moles would be:
To get 0.0025 moles from 1.15 M initial solution, the volume of the solution required is calculated below:
The molarity of the initial solution is,
Therefore, knowing the molarity and volume of the desired final solution, and the molarity of the source (initial) solution, volume of the source (initial) solution required, can be calculated.
(d)
To determine:
(d)

Explanation of Solution
Molarity is defined as the number of moles of solute in 1 L of solution.
The final solution is
moles of solute per 1000 mL solution. Thus, for 50 mL solution, the number of moles would be:
To get
moles from 0.25 M initial solution, the volume of the solution required is calculated below:
The molarity of the initial solution is,
Want to see more full solutions like this?
Chapter 3 Solutions
Chemistry for Engineering Students
- Post Lab Questions. 1) Draw the mechanism of your Diels-Alder cycloaddition. 2) Only one isomer of product is formed in the Diels-Alder cycloaddition. Why? 3) Imagine that you used isoprene as diene - in that case you don't have to worry about assigning endo vs exo. Draw the "endo" and "exo" products of the Diels-Alder reaction between isoprene and maleic anhydride, and explain why the distinction is irrelevant here. 4) This does not hold for other dienes. Draw the exo and endo products of the reaction of cyclohexadiene with maleic anhydride. Make sure you label your answers properly as endo or exo. 100 °C Xylenes ??? 5) Calculate the process mass intensity for your specific reaction (make sure to use your actual amounts of reagent).arrow_forwardIndicate the product(s) A, B C and D that are formed in the reaction: H + NH-NH-CH [A+B] [C+D] hydrazonesarrow_forwardHow can you prepare a 6 mL solution of 6% H2O2, if we have a bottle of 30% H2O2?arrow_forward
- How many mL of H2O2 from the 30% bottle must be collected to prepare 6 mL of 6% H2O2.arrow_forwardIndicate the product(s) B and C that are formed in the reaction: HN' OCH HC1 B + mayoritario C minoritario OCH3arrow_forwardIndicate the product(s) that are formed in the reaction: NH-NH, OCH3 -H₂O OCH3arrow_forward
- 21.38 Arrange the molecules in each set in order of increasing acidity (from least acidic to most acidic). OH OH SH NH2 8 NH3 OH (b) OH OH OH (c) & & & CH3 NO2 21.39 Explain the trends in the acidity of phenol and the monofluoro derivatives of phenol. OH OH OH OH PK 10.0 PK 8.81 PK 9.28 PK 9.81arrow_forwardidentify which spectrum is for acetaminophen and which is for phenacetinarrow_forwardThe Concept of Aromaticity 21.15 State the number of 2p orbital electrons in each molecule or ion. (a) (b) (e) (f) (c) (d) (h) (i) DA (k) 21.16 Which of the molecules and ions given in Problem 21.15 are aromatic according to the Hückel criteria? Which, if planar, would be antiaromatic? 21.17 Which of the following structures are considered aromatic according to the Hückel criteria? ---0-0 (a) (b) (c) (d) (e) (h) H -H .8.0- 21.18 Which of the molecules and ions from Problem 21.17 have electrons donated by a heteroatom?arrow_forward
- 1. Show the steps necessary to make 2-methyl-4-nonene using a Wittig reaction. Start with triphenylphosphine and an alkyl halide. After that you may use any other organic or inorganic reagents. 2. Write in the product of this reaction: CH3 CH₂ (C6H5)₂CuLi H₂O+arrow_forward3. Name this compound properly, including stereochemistry. H₂C H3C CH3 OH 4. Show the step(s) necessary to transform the compound on the left into the acid on the right. Bri CH2 5. Write in the product of this LiAlH4 Br H₂C OHarrow_forwardWhat are the major products of the following reaction? Please provide a detailed explanation and a drawing to show how the reaction proceeds.arrow_forward
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningIntroductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning




