ELEM PRINC CHEM (LL) W/EBOOK
ELEM PRINC CHEM (LL) W/EBOOK
4th Edition
ISBN: 9781119846772
Author: FELDER
Publisher: WILEY
Question
Book Icon
Chapter 3, Problem 3.65P
Interpretation Introduction

(a)

Interpretation:

The linear equation for V(mV) in terms of T°C and convert it to an equation for T in terms of V should be derived.

Concept introduction:

The voltage and temperature can be related to each other by using following equation:

V(mV)=aT(0C)+b

Here, V is the voltage in milli-volts (mV) and T is the temperature of the system in degree Celsius, whereas a and b are the constants.

Interpretation Introduction

(b)

Interpretation:

The average value of the rate of change of temperature, dT/dt, at the time of measurement period should be determined.

Concept introduction:

The rate of change in temperature with time can be obtained with the help of the equation:

T0C=18.10V(mV)+4.598

Interpretation Introduction

(c)

Interpretation:

The principal benefits and disadvantages of thermocouples should be determined.

Concept introduction:

The thermocouple is a type of thermometer which has an application in industries for measuring extreme temperatures.

Blurred answer
Students have asked these similar questions
Propane is burned completely with excess oxygen. The product gas contains 24.5 mole% CO2, 6.10% CO, 40.8% H2O, and 28.6% O2. (a) Calculate the percentage excess O2 fed to the furnace. (b) A student wrote the stoichiometric equation of the combustion of propane to form CO2 and CO as: 2C3H8 + 11O2 → 3CO2 + 3CO + 8H2O     According to this equation, CO2 and CO should be in a ratio of 1/1 in the reaction products, but in the product gas of Part (a) they are in a ratio of 24.8/6.12. Is that result possible? (Hint: Yes.) Explain how
Enumerate the various methods for catalyst preparation and discuss vividly any one of the methods
2. Design a spherical tank, with a wall thickness of 2.5 cm that will ensure that no more than 45 kg of hydrogen will be lost per year. The tank, which will operate at 500 °C, can be made from nickel, aluminum, copper, or iron (BCC). The diffusion coefficient of hydrogen and the cost per pound for each available material is listed in Table 1. Material Do (m2/s) Q (J/mol) Cost ($/kg) Nickel 5.5 x 10-7 37.2 16.09 Aluminium 1.6 x 10-5 43.2 2.66 Copper 1.1 x 10-6 39.3 9.48 Iron (BCC) 1.2 × 10-7 15.1 0.45 Table 1: Diffusion data for hydrogen at 500 °C and the cost of material.

Chapter 3 Solutions

ELEM PRINC CHEM (LL) W/EBOOK

Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Introduction to Chemical Engineering Thermodynami...
Chemical Engineering
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:McGraw-Hill Education
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemical Engineering
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Text book image
Elements of Chemical Reaction Engineering (5th Ed...
Chemical Engineering
ISBN:9780133887518
Author:H. Scott Fogler
Publisher:Prentice Hall
Text book image
Process Dynamics and Control, 4e
Chemical Engineering
ISBN:9781119285915
Author:Seborg
Publisher:WILEY
Text book image
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:9781285061238
Author:Lokensgard, Erik
Publisher:Delmar Cengage Learning
Text book image
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:9780072848236
Author:Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:McGraw-Hill Companies, The