Concept explainers
(a)
The design of a single-angle tension member using Load Resistance Factor Design (LRFD).

Answer to Problem 3.6.1P
The single angle tension member using LRFD is
Explanation of Solution
Given:
The member is
Dead Load is
Live load is
Concept Used:
Write the expression for factored load.
Here, the factored load is
Write the expression for the required gross area.
Here, the gross area is
Write the expression for the required effective area.
Here, the required effective area is
Write the expression for the effective area of the section.
Here, the effective area of the section is
Write the expression for the net area of the section.
Here, the gross area of the section is
Calculation:
Calculate the factored load.
Substitute
Calculate the required gross area of the tension member.
Substitute
Calculate the required net area of the tension member.
Substitute
Before choosing the sections calculate the minimum radius of gyration.
Write the expression for the radius of gyration.
Here, the minimum radius of gyration is
Substitute
Choose the section that has parameters slightly above the required values.
Trial 1:
Choose the section
The properties of the section are,
Here, the gross area of the section is
Compare the gross area.
Hence, the section is feasible.
Compare the radii of gyration.
Hence, the section is feasible.
Calculate the net area of the section.
Substitute
Calculate the effective area of the section.
Substitute
Compare the effective area required and that of the section.
Hence, the section is feasible for design.
Adopt the section
Conclusion:
Thus, the single angle tension member using LRFD is
(b)
The single angle tension member using Allowable Strength Design (ASD).

Answer to Problem 3.6.1P
The single angle tension member using ASD is
Explanation of Solution
Concept used:
Write the expression for factored load,
Here, the factored load is
Write the expression for the required gross area.
Write the expression for the required effective area.
Write the expression for the effective area of the section.
Here, the effective area of the section is
Calculation:
Calculate the factored load.
Substitute
Calculate the required gross area of the tension member.
Substitute
Calculate the required net area of the tension member.
Substitute
Before choosing the sections calculate the minimum radius of gyration.
Substitute
Choose the section that has parameters slightly above the required values.
Trial 1:
Choose the section
The properties of the section are,
Here, the gross area of the section is
Compare the gross area.
Hence, the section is feasible.
Compare the radii of gyration.
Hence, the section is feasible.
Calculate the net area of the section.
Substitute
Calculate the effective area of the section.
Substitute
Compare the effective area required and that of the section.
Hence, the section is feasible for design.
Adopt the section
Conclusion:
Thus, the single angle tension member using ASD is
Want to see more full solutions like this?
Chapter 3 Solutions
STEEL DESIGN W/ ACCESS
- The capacity of a freeway lane with free-flow speed of 70mph and jam density average vehicle spacing 40ft assuming greenshields’s model applies. Please explain step by step and show formulaarrow_forward3. For problems given below, determine all the reaction forces and plot force diagrams for normal forces (N), shear force (T), and moments (M). 150 lb/ft 10 ft C B 2 ft 2 ft -4 ft D 250 lb/ft 50 lb/ft B 150 lb-ft 150 lb-ft -20 ft 10 ft -20 ft 200 lb-ftarrow_forwardPlease explain step by step and show all the formula usedarrow_forward
- By using the yield line theory, determine the moment (m) for an isotropic reinforced concrete two- way slab shown in figure under a uniformly distributed load. Using moment method 5 2 7.0m 1 A I c.g. * B c.g 5 2 B c. g. ㄨˋ A A 2.5 2.0 2.5 5.0marrow_forwardPlease explain step by step and include any formula usedarrow_forwardPlease explain step by step and include any formular usedarrow_forward
- 2 1d/T₁₂ = 1/2 n First impulse E ("œw / ])÷(1) '7 J-1 -1- -2+ 0 0.5 1 1.5 2arrow_forwardBars AD and CE (E=105 GPa, a = 20.9×10-6 °C) support a rigid bar ABC carrying a linearly increasing distributed load as shown. The temperature of Bar CE was then raised by 40°C while the temperature of Bar AD remained unchanged. If Bar AD has a cross-sectional area of 200 mm² while CE has 150 mm², determine the following: the normal force in bar AD, the normal force in bar CE, and the vertical displacement at Point A. D 0.4 m -0.8 m A -0.4 m- B -0.8 m- E 0.8 m C 18 kN/marrow_forwardDraw the updated network. Calculate the new project completion date. Check if there are changes to the completion date and/or to the critical path. Mention the causes for such changes, if any. New network based on the new information received after 15 days (Correct calculations, professionally done). Mention if critical path changes or extended. Write causes for change in critical path or extension in the critical path.arrow_forward
- Steel Design (Activate Learning with these NEW ti...Civil EngineeringISBN:9781337094740Author:Segui, William T.Publisher:Cengage Learning
