Physics for Scientists and Engineers: Foundations and Connections
1st Edition
ISBN: 9781133939146
Author: Katz, Debora M.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 3, Problem 35PQ
A firecracker explodes into four equal pieces (Fig. P3.35). Given the magnitude and direction of the velocity for each piece and the coordinate system shown, determine the x and y velocity components for each piece of the firecracker.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
In Figure 1, it takes 1/6 of a second for the puck to go from point 1 to point 2, and 1/6 of a second to go from point 2 to point 3, etc. What is the x-component of the velocity of the puck at red point 1? Use the blue coordinate system.
Immediately after the bouncing golf ball leaves the floor, its components of velocity are Vx = 0.888 m/s, and Vy = 3.504 m/s. Determine the horizontal distance (meters) from the point where the ball left the floor to the point where it hits the floor again.
Answer is 0.634. No other answer thanks.
A person throws a ball with speed 102 m/s at a 45° angle. How many seconds faster would the ball arrive if the person threw the ball at the same speed and the same distance but made the trip in two identical bumps. Assume that there is no loss of speed at the bounce. Hint: Use R = v2/g * sin(2θ) and t=2*vy(sinθ)/g.
Chapter 3 Solutions
Physics for Scientists and Engineers: Foundations and Connections
Ch. 3.1 - The three vectors A,B and C in Figure 3.7 all have...Ch. 3.1 - Prob. 3.2CECh. 3.1 - a. You wish to represent free-fall acceleration...Ch. 3.2 - Prob. 3.4CECh. 3.3 - Prob. 3.5CECh. 3 - A velocity vector has a magnitude of 720 m/s. Two...Ch. 3 - A young boy throws a baseball through a window. a....Ch. 3 - Prob. 3PQCh. 3 - Prob. 4PQCh. 3 - Vector A, with a magnitude of 18 units, points in...
Ch. 3 - Prob. 6PQCh. 3 - Prob. 7PQCh. 3 - The layout of the town of Popperville is a...Ch. 3 - Prob. 9PQCh. 3 - Prob. 10PQCh. 3 - Prob. 11PQCh. 3 - Prob. 12PQCh. 3 - In Chapter 5, you will study a very important...Ch. 3 - Refer to the situation described in Problem 14....Ch. 3 - Vector A has a magnitude of 4.50 m and makes an...Ch. 3 - Miguel, an Ultimate Frisbee player, is running...Ch. 3 - A baseball diamond consists of four plates...Ch. 3 - Prob. 19PQCh. 3 - Prob. 20PQCh. 3 - Two aircraft approaching an aircraft carrier are...Ch. 3 - Prob. 22PQCh. 3 - A truck driver delivering office supplies downtown...Ch. 3 - Prob. 24PQCh. 3 - Carolyn rides her bike 40.0 south of west for 5.40...Ch. 3 - Prob. 26PQCh. 3 - Prob. 27PQCh. 3 - Prob. 28PQCh. 3 - Prob. 29PQCh. 3 - Prob. 30PQCh. 3 - Prob. 31PQCh. 3 - Prob. 32PQCh. 3 - Prob. 33PQCh. 3 - Prob. 34PQCh. 3 - A firecracker explodes into four equal pieces...Ch. 3 - Prob. 36PQCh. 3 - Prob. 37PQCh. 3 - Prob. 38PQCh. 3 - Prob. 39PQCh. 3 - Figure P3.40 shows a map of Grand Canyon National...Ch. 3 - Prob. 41PQCh. 3 - The same vectors that are shown in Figure P3.6 are...Ch. 3 - A supertanker begins in Homer, Alaska, sails 125...Ch. 3 - A Three vectors are shown in Figure P3.44, but...Ch. 3 - A vector A=(5.20i3.70j) m and a vector...Ch. 3 - Prob. 46PQCh. 3 - Prob. 47PQCh. 3 - Prob. 48PQCh. 3 - An airplane leaves city A and flies a distance d1...Ch. 3 - An aircraft undergoes two displacements. If the...Ch. 3 - The resultant vector R=2AB2C has zero magnitude....Ch. 3 - A Three vectors all have the same magnitude. The...Ch. 3 - The two-dimensional vectors A and B both have...Ch. 3 - Prob. 54PQCh. 3 - Two birds begin next to each other and then fly...Ch. 3 - Prob. 56PQCh. 3 - General Problems 57. G A spider undergoes the...Ch. 3 - Peter throws a baseball through a houses window....Ch. 3 - Prob. 59PQCh. 3 - Prob. 60PQCh. 3 - Prob. 61PQCh. 3 - A glider aircraft initially traveling due west at...Ch. 3 - What are the magnitude and direction of a vector...Ch. 3 - Prob. 64PQCh. 3 - Prob. 65PQCh. 3 - Prob. 66PQCh. 3 - Prob. 67PQCh. 3 - Prob. 68PQCh. 3 - Prob. 69PQCh. 3 - Prob. 70PQCh. 3 - Vector F is proportional to vector A such that...Ch. 3 - Prob. 72PQCh. 3 - Prob. 73PQCh. 3 - Problems 74 and 75 are paired. 74. N A classroom...Ch. 3 - Prob. 75PQ
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- When a chronometer begins with a time of zero seconds, matching soccer balls have a horizontal separation, d=6.28m. The ball on the left is released from the ground with an initial velocity of magnitude v0 directed toward the other soccer ball. The ball on the right has an initial height h1=3.17m and is momentarily at rest. A short time later, the matching soccer balls collide at the collision point, C, at a height h2-1.69m above the ground, as indicated on the diagram. Ignore the finite size of the balls, and additionally ignore any air resistance. (Dimensions are not to scale.) Part (a) Given the numeric values in the problem statement, tabulate the elapsed time, in seconds, at which the matching soccer balls collide. Part (b) Given the numeric values in the problem statement, tabulate the magnitude, in meters per second, of the initial velocity of the soccer ball on the left.arrow_forwardKara is setting up a tee-shirt cannon for a community event. The angle of the cannon can be adjusted, but all projectiles leave the cannon at 25 meters per second. If Kara sets the angle of the cannon to be 20.o above horizontal, what will be the range of the projectiles? 64 m 61 m 41 m 25 marrow_forwardHow do I find the value of A?arrow_forward
- a) At what height above the ground does the projectile have a speed of 0.5v0? Express your answer in terms of v and g. You may or may not use all of these quantities. b) What is the speed of the object at the height of (1/2)hmax? Express your answer in terms of v and g. You may or may not use all of these quantities.arrow_forwardI can’t figure out the value of A.arrow_forwardFor a forensics experiment, a student decides to measure the muzzle velocity of the pellets from his BB gun. She points the gun horizontally. On a vertical wall a distance 47.3 m away from the gun, a target is placed. The shots hit the target a vertical distance 0.10 m below the gun's barrel. What is the initial speed of the pellets? Your Answer: units Answerarrow_forward
- Roger Federer is about to do his smooth, classical and effortless serve to Rafael Nadal in Australian open final. The ball is shot horizontally from a height of 3.0 m above the ground level of a tennis court, and 6.3 m from the net. The net is of height 0.9 m. Assume the ball only travels along the centreline of the court. The situation is shown in the Figure below. B 0.9 m VA 6.3 m 3.0 m |▬▬▬st Determine the horizontal velocity V₁ of the ball at point A so that it clears the net without touching it at point B. Also calculate the distances where the ball strikes the ground. Note: Show your workings for each part of the question. Provide your answer to 2 decimal places.arrow_forwardTwo spheres are launched horizontally from a 1.2 mm -high table. Sphere AA is launched with an initial speed of 4.5 m/sm/s . Sphere BB is launched with an initial speed of 2.5 m/sm/s . A. What is the time for the sphere AA to hit the floor? Express your answer using two significant figures. B. What is the time for the sphere BB to hit the floor? Express your answer using two significant figures.arrow_forwardGeorgia, standing on the back of the pick-up truck, wants to throw her last piece of balut to her mortal enemy, Emma. before the truck started moving, the two women are separated by a distance of 2 m. For two seconds, the truck uniformly accelerated until it reached a velocity of 4 m/s which it then maintained. With hatred, Georgia throws the last piece of balut with a velocity of 12.5 m/s at an angle of 40° from horizontal, measured relative to the truck. If she makes the throw 2.8 seconds after the truck started moving, will she be able to hit Emma? Note that Emma is at rest due to exhaustion from their earlier fight and she cannot dodge the balut. Set your origin at point A. Neglect air resistance.arrow_forward
- Consider a projectile being launched with an initial speed of 49.5 m/s at a variety of initial angles. Refer to the figure. Part (a) What is the range, in meters, of the projectile if it is launched at an angle of θ1 = 70.6°? b. What is the range, in meters, of the projectile if it is launched at an angle of θ2 = 38°? c. What is the range, in meters, of the projectile if it is launched at an angle of θ3 = 90 − 70.6°, the complement of θ1?arrow_forwardThe range of projectiles is dependent on the velocity and angle of the launch. Use the kinematic equations to prove the range of a projectile launched at velocity, v, and angle, 0, 2² is equal to R = sin (20). g Hint: The velocity at the beginning and end of the motion has the same magnitude, but opposite direction.arrow_forwardConsider the motion of a baseball. It has an initial position (Xo Yo) = (0,3.5) feet when it is hit at an angle of 60° with an initial speed of 78 ft/s. Assume the x-axis is horizontal, the positive y-axis is vertical, the ground is horizontal, and only the gravitational force acts on the object. a. Find the velocity and position vectors, for t≥ 0. b. Determine the time of flight and range of the object. c. Determine the maximum height of the object. a. The velocity vector is v(t) =, for t≥ 0. The position vector is r(t) = ([ for t≥ 0. b. The projectile remains in the air for (Round to two decimal places as needed.) seconds. The projectile travels feet. (Round to two decimal places as needed.) c. The maximum height of the object is feet. (Round to two decimal places as needed.)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Kinematics Part 3: Projectile Motion; Author: Professor Dave explains;https://www.youtube.com/watch?v=aY8z2qO44WA;License: Standard YouTube License, CC-BY