Chemistry Principles And Practice
3rd Edition
ISBN: 9781305295803
Author: David Reger; Scott Ball; Daniel Goode
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 3, Problem 3.54QE
(a)
Interpretation Introduction
Interpretation:
Number of molecules present in
(b)
Interpretation Introduction
Interpretation:
Number of molecules present in
(c)
Interpretation Introduction
Interpretation:
Number of molecules present in
(d)
Interpretation Introduction
Interpretation:
Number of molecules in
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
2. Using the following data to calculate the value of AvapH o of water at 298K. AvapH o of water at
373K is 40.7 kJ/mol; molar heat capacity of liquid water at constant pressure is 75.2J mol-1 K-1 and
molar heat capacity of water vapor at constant pressure is 33.6 J mol-1 K-1.
Part VII. Below are the 'HNMR
13
3 C-NMR, COSY 2D- NMR, and HSQC 20-NMR (Similar with HETCOR but axes are reversed) spectra of an
organic compound with molecular formula C6H13 O. Assign chemical shift values to the H and c atoms of the
compound. Find the structure. Show complete solutions.
Predicted 1H NMR Spectrum
ли
4.7 4.6 4.5 4.4 4.3 4.2 4.1 4.0 3.9 3.8 3.7 3.6 3.5 3.4 3.3 3.2 3.1 3.0 2.9 2.8 2.7 2.6 2.5 2.4 2.3 2.2 2.1 2.0 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8
f1 (ppm)
3. Draw the expanded structural formula, the condensed structural formula, and the skeletal
structural formula for 2-pentene.
expanded structure:
Condensed structure:
Skeletal formula:
4. Draw the expanded structural formula, the condensed structural formula, and the skeletal
structural formula for 2-methyl-3-heptene.
expanded structure:
Condensed structure:
Skeletal formula:
following structure
Chapter 3 Solutions
Chemistry Principles And Practice
Ch. 3 - Prob. 3.1QECh. 3 - Prob. 3.2QECh. 3 - Using solid circles for H atoms and open circles...Ch. 3 - Prob. 3.4QECh. 3 - Prob. 3.5QECh. 3 - How many objects are in 1 mol? What is the common...Ch. 3 - Prob. 3.7QECh. 3 - Prob. 3.8QECh. 3 - Prob. 3.11QECh. 3 - Describe an experiment that would enable someone...
Ch. 3 - Only the empirical formula can be calculated from...Ch. 3 - Prob. 3.14QECh. 3 - Prob. 3.15QECh. 3 - Prob. 3.16QECh. 3 - Prob. 3.17QECh. 3 - Prob. 3.18QECh. 3 - Prob. 3.19QECh. 3 - A mixture of sulfur dioxide and oxygen gas reacts...Ch. 3 - Prob. 3.21QECh. 3 - Prob. 3.22QECh. 3 - Prob. 3.23QECh. 3 - Prob. 3.24QECh. 3 - Prob. 3.25QECh. 3 - Prob. 3.26QECh. 3 - Prob. 3.27QECh. 3 - Prob. 3.28QECh. 3 - Prob. 3.29QECh. 3 - Prob. 3.30QECh. 3 - Prob. 3.31QECh. 3 - Prob. 3.32QECh. 3 - Prob. 3.33QECh. 3 - Prob. 3.34QECh. 3 - Prob. 3.35QECh. 3 - Prob. 3.36QECh. 3 - Acetone, (CH3)2CO, is an important industrial...Ch. 3 - Prob. 3.38QECh. 3 - Prob. 3.39QECh. 3 - Prob. 3.40QECh. 3 - Prob. 3.41QECh. 3 - Prob. 3.42QECh. 3 - Prob. 3.43QECh. 3 - Prob. 3.44QECh. 3 - Prob. 3.45QECh. 3 - Prob. 3.46QECh. 3 - Prob. 3.47QECh. 3 - Prob. 3.48QECh. 3 -
One of the ways to remove nitrogen monoxide gas,...Ch. 3 - Prob. 3.50QECh. 3 - Prob. 3.51QECh. 3 - Prob. 3.52QECh. 3 - Prob. 3.53QECh. 3 - Prob. 3.54QECh. 3 - Prob. 3.55QECh. 3 - Prob. 3.56QECh. 3 - Prob. 3.57QECh. 3 - Prob. 3.58QECh. 3 - Prob. 3.59QECh. 3 - Prob. 3.60QECh. 3 - Prob. 3.61QECh. 3 - Prob. 3.62QECh. 3 - Prob. 3.63QECh. 3 - Prob. 3.64QECh. 3 - Prob. 3.65QECh. 3 - Prob. 3.66QECh. 3 - Prob. 3.67QECh. 3 - Prob. 3.68QECh. 3 - (a) Calculate the mass, in grams, of 3.50 mol NO2....Ch. 3 - Prob. 3.70QECh. 3 - Prob. 3.71QECh. 3 - Prob. 3.72QECh. 3 - Prob. 3.73QECh. 3 - Nickel tetracarbonyl, Ni(CO)4, is a volatile...Ch. 3 - Prob. 3.75QECh. 3 - Prob. 3.76QECh. 3 - Prob. 3.77QECh. 3 - Prob. 3.78QECh. 3 - Prob. 3.79QECh. 3 - Prob. 3.80QECh. 3 - Prob. 3.81QECh. 3 - Prob. 3.82QECh. 3 - Prob. 3.83QECh. 3 - Prob. 3.84QECh. 3 - A chemist prepared a compound that she thought had...Ch. 3 - Prob. 3.86QECh. 3 - Prob. 3.87QECh. 3 - Prob. 3.88QECh. 3 - Prob. 3.89QECh. 3 - Prob. 3.90QECh. 3 - Prob. 3.91QECh. 3 - Prob. 3.92QECh. 3 - Prob. 3.93QECh. 3 - Prob. 3.94QECh. 3 - Prob. 3.95QECh. 3 - Prob. 3.96QECh. 3 - Prob. 3.97QECh. 3 - Prob. 3.98QECh. 3 - Prob. 3.99QECh. 3 - Prob. 3.100QECh. 3 - Prob. 3.101QECh. 3 - Prob. 3.102QECh. 3 - Prob. 3.103QECh. 3 - Prob. 3.104QECh. 3 - Prob. 3.105QECh. 3 - Prob. 3.106QECh. 3 - Prob. 3.107QECh. 3 - Prob. 3.108QECh. 3 - Prob. 3.109QECh. 3 - Prob. 3.110QECh. 3 - Prob. 3.111QECh. 3 - Prob. 3.112QECh. 3 - Prob. 3.113QECh. 3 - Prob. 3.114QECh. 3 - A compound contains 62.0% carbon, 10.4% hydrogen,...Ch. 3 - Mandelic acid is an organic acid composed of...Ch. 3 - Acetic acid gives vinegar its sour taste. Analysis...Ch. 3 - Prob. 3.118QECh. 3 - Prob. 3.119QECh. 3 - Prob. 3.120QECh. 3 - Prob. 3.121QECh. 3 - Prob. 3.122QECh. 3 - Aluminum metal reacts with sulfuric acid, H2SO4,...Ch. 3 - Prob. 3.124QECh. 3 - Lithium metal reacts with O2 to form lithium...Ch. 3 - Prob. 3.126QECh. 3 - A mixture of hydrogen and nitrogen gas reacts as...Ch. 3 - Prob. 3.128QECh. 3 - Prob. 3.129QECh. 3 - Prob. 3.130QECh. 3 - Prob. 3.131QECh. 3 - Prob. 3.132QECh. 3 - Prob. 3.133QECh. 3 - A reaction of 43.1 g CS2 with excess Cl2 yields...Ch. 3 - The reaction of 9.66 g O2 with 9.33 g NO produces...Ch. 3 - Prob. 3.136QECh. 3 - The combustion of 33.5 g C3H6 with 127 g O2 yields...Ch. 3 - Prob. 3.138QECh. 3 - Prob. 3.139QECh. 3 - When heated, potassium chlorate, KClO3, melts and...Ch. 3 - Prob. 3.141QECh. 3 - Prob. 3.142QECh. 3 - Prob. 3.143QECh. 3 - Prob. 3.144QECh. 3 - Prob. 3.145QECh. 3 - Prob. 3.146QECh. 3 - Prob. 3.147QECh. 3 - Prob. 3.149QECh. 3 - Prob. 3.150QECh. 3 - Prob. 3.151QECh. 3 - Prob. 3.152QECh. 3 - The compound dinitrogen monoxide, N2O, is a...Ch. 3 - Prob. 3.154QECh. 3 - Prob. 3.155QECh. 3 - Prob. 3.156QECh. 3 - Prob. 3.157QECh. 3 - Prob. 3.159QECh. 3 - Prob. 3.160QECh. 3 - The reaction of equal molar amounts of benzene,...Ch. 3 - Although copper does not usually react with acids,...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Part IV. Propose a plausible Structure w/ the following descriptions: a) A 5-carbon hydrocarbon w/ a single peak in its proton decoupled the DEPT-135 Spectrum shows a negative peak C-NMR spectrum where b) what cyclohexane dione isomer gives the largest no. Of 13C NMR signals? c) C5H120 (5-carbon alcohol) w/ most deshielded carbon absent in any of its DEPT Spectivaarrow_forward13C NMR is good for: a) determining the molecular weight of the compound b) identifying certain functional groups. c) determining the carbon skeleton, for example methyl vs ethyl vs propyl groups d) determining how many different kinds of carbon are in the moleculearrow_forward6 D 2. (1 pt) Limonene can be isolated by performing steam distillation of orange peel. Could you have performed this experiment using hexane instead of water? Explain. 3. (2 pts) Using GCMS results, analyze and discuss the purity of the Limonene obtained from the steam distillation of orange peel.arrow_forward
- Part III. Arrange the following carbons (in blue) in order of increasing chemical shift. HO B NH 2 A CIarrow_forward6. Choose the compound that will produce the spectrum below and assign the signals as carbonyl, aryl, or alkyl. 100 ō (ppm) 50 0 7. 200 150 Assign all of the protons on the spectrum below. 8. A B 4 E C 3 ō (ppm) 2 1 0 Choose the compound that will produce the spectrum below and assign the signals to the corresponding protons. OH 6 OH 3 2 1 0 4 ō (ppm)arrow_forwardIn the Thermo Fisher application note about wine analysis (Lesson 3), the following chromatogram was collected of nine components of wine. If peak 3 has a retention time of 3.15 minutes and a peak width of 0.070 minutes, and peak 4 has a retention time of 3.24 minutes and a peak width of 0.075 minutes, what is the resolution factor between the two peaks? [Hint: it will help to review Lesson 2 for this question.] MAU 300 200 T 34 5 100- 1 2 CO 6 7 8 9 0 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 5.2 Minutes 3.22 0.62 1.04 O 1.24arrow_forward
- The diagram shows two metals, A and B, which melt at 1000°C and 1400°C. State the weight percentage of the primary constituent (grains of C) that would be obtained by solidifying a 20% alloy of B. 1000°C a+L L+C 900°С 12 α a+C 45 1200 C L+y 140096 C+Y a+ß 800°C 700°C C+B 96 92 a+B 0 10 20 30 40 50 60 70 80 90 100 A % peso B Barrow_forward8. Choose the compound that will produce the spectrum below and assign the signals to the corresponding protons. 2 4 3 ō (ppm) OH 4 6 6 СОН 2 1 0arrow_forward7. Assign all of the protons on the spectrum below. A B 2 C E 2 1 3 6 4 3 2 1 0arrow_forward
- e. If (3R,4R)-3,4-dichloro-2,5-dimethylhexane and (3R,4S)-3,4-dichloro-2,5-dimethylhexane are in a solution at the same concentration, would this solution be expected to rotate plane polarized light (that is, be optically active)? Please provide your reasoning for your answer. [If you read this problem carefully, you will not need to draw out the structures to arrive at your answer...]arrow_forward1. How many neighbors does the proton that produces the multiplet below have? 2. 3. اللـ Draw a partial structure from the multiplet below. (The integration of the multiplet is 6) M Using the additivity constants found in appendix G of your lab manual, calculate the approximate chemical shifts of the protons indicated below. (Show your work!!!) B A Br SHarrow_forward1) Suppose 0.1 kg ice at 0°C (273K) is in 0.5kg water at 20°C (293K). What is the change in entropy of the ice as it melts at 0°? To produce the original "water gas" mixture, carbon (in a combustible form known as coke) is reacted with steam: 131.4 kJ + H20(g) + C(s) → CO(g) + H2(g) From this information and the equations in the previous problem, calculate the enthalpy for the combustion or carbon to form carbon dioxide. kindly show me how to solve this long problem. Thanksarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Step by Step Stoichiometry Practice Problems | How to Pass ChemistryMole Conversions Made Easy: How to Convert Between Grams and Moles; Author: Ketzbook;https://www.youtube.com/watch?v=b2raanVWU6c;License: Standard YouTube License, CC-BY