![CHEMISTRY:MOLECULAR...(LL)-W/CONNECT](https://www.bartleby.com/isbn_cover_images/9781264094202/9781264094202_largeCoverImage.gif)
Concept explainers
(a)
Interpretation:
The empirical formula of the compound that contains
Concept introduction:
An empirical formula gives the simplest whole number ratio of atoms of each element present in a compound.
Following are the steps to determine the empirical formula of a compound when the moles/fractional amount of each element is given,
Step 1: Write the amount
Step 2: Convert the moles of each element to the whole number subscripts. The steps for this math conversion are as follows:
(a) Each subscript is divided by the smallest subscript.
(b) If the whole number is not obtained after division, multiply the obtained subscripts by the smallest integer. This gives the empirical formula of the compound.
(b)
Interpretation:
The empirical formula of the compound that contains
Concept introduction:
An empirical formula gives the simplest whole number ratio of atoms of each element present in a compound.
Following are the steps to determine the empirical formula of a compound when the masses of each element are given,
Step 1: Divide mass of each element by its molar mass to convert the mass of the element to moles. The formula to calculate moles from the mass is as follows:
Step 2: The number of moles of the elements is the fractional amounts, thus, write the calculated amount
Step 3: Convert the moles of each element to the whole number subscripts. The steps for this math conversion are as follows:
(a) Each subscript is divided by the smallest subscript.
(b) If the whole number is not obtained after division, multiply the obtained subscripts by the smallest integer. This gives the empirical formula of the compound.
(c)
Interpretation:
The empirical formula of the compound that contains
Concept introduction:
An empirical formula gives the simplest whole number ratio of atoms of each element present in a compound.
Following are the steps to determine the empirical formula of a compound when the percentage of each element is given,
Step 1: Assume
Step 2: Divide mass of each element by its molar mass to convert the mass of the element to moles. The formula to calculate moles from the mass is as follows:
Step 3: The number of moles of the elements is the fractional amounts, thus, write the calculated amount
Step 4: Convert the moles of each element to the whole number subscripts. The steps for this math conversion are as follows:
(a) Each subscript is divided by the smallest subscript.
(b) If the whole number is not obtained after division, multiply the obtained subscripts by the smallest integer. This gives the empirical formula of the compound.
![Check Mark](/static/check-mark.png)
Want to see the full answer?
Check out a sample textbook solution![Blurred answer](/static/blurred-answer.jpg)
Chapter 3 Solutions
CHEMISTRY:MOLECULAR...(LL)-W/CONNECT
- Which statement about the following chemical reaction is not correct? 2NH3+202 →→→ N2O + 3H₂O ○ It requires 2 mol of ammonia to produce 3 mol of water. It requires 2 mol of dioxygen to produce 1 mol of N2O. ○ Nine moles of water are produced when four moles of ammonia are consumed. Two moles of N2O would be produced when four moles of dioxygen are consumed. Two moles of ammonia react with two moles of dioxygen.arrow_forwardIf 169.7 g of NaOH (40.0 g/mol) were used to prepare 3411.0 mL of solution, what would the concentration be? Group of answer choicesarrow_forwardThe mass of 3.6 mol of some element is 576 g. What is the element?arrow_forward
- I have a question about this problem involving mechanisms and drawing curved arrows for acids and bases. I know we need to identify the nucleophile and electrophile, but are there different types of reactions? For instance, what about Grignard reagents and other types that I might not be familiar with? Can you help me with this? I want to identify the names of the mechanisms for problems 1-14, such as Gilman reagents and others. Are they all the same? Also, could you rewrite it so I can better understand? The handwriting is pretty cluttered. Additionally, I need to label the nucleophile and electrophile, but my main concern is whether those reactions differ, like the "Brønsted-Lowry acid-base mechanism, Lewis acid-base mechanism, acid-catalyzed mechanisms, acid-catalyzed reactions, base-catalyzed reactions, nucleophilic substitution mechanisms (SN1 and SN2), elimination reactions (E1 and E2), organometallic mechanisms, and so forth."arrow_forwardI have a question about this problem involving mechanisms and drawing curved arrows for acids and bases. I know we need to identify the nucleophile and electrophile, but are there different types of reactions? For instance, what about Grignard reagents and other types that I might not be familiar with? Can you help me with this? I want to identify the names of the mechanisms for problems 1-14, such as Gilman reagents and others. Are they all the same? Also, could you rewrite it so I can better understand? The handwriting is pretty cluttered. Additionally, I need to label the nucleophile and electrophile, but my main concern is whether those reactions differ, like the "Brønsted-Lowry acid-base mechanism, Lewis acid-base mechanism, acid-catalyzed mechanisms, acid-catalyzed reactions, base-catalyzed reactions, nucleophilic substitution mechanisms (SN1 and SN2), elimination reactions (E1 and E2), organometallic mechanisms, and so forth."arrow_forwardI have a question about this problem involving mechanisms and drawing curved arrows for acids and bases. I know we need to identify the nucleophile and electrophile, but are there different types of reactions? For instance, what about Grignard reagents and other types that I might not be familiar with? Can you help me with this? I want to identify the names of the mechanisms for problems 1-14, such as Gilman reagents and others. Are they all the same? Also, could you rewrite it so I can better understand? The handwriting is pretty cluttered. Additionally, I need to label the nucleophile and electrophile, but my main concern is whether those reactions differ, like the "Brønsted-Lowry acid-base mechanism, Lewis acid-base mechanism, acid-catalyzed mechanisms, acid-catalyzed reactions, base-catalyzed reactions, nucleophilic substitution mechanisms (SN1 and SN2), elimination reactions (E1 and E2), organometallic mechanisms, and so forth."arrow_forward
- Show work with explanation. Don't give Ai generated solutionarrow_forwardShow work. don't give Ai generated solutionarrow_forwardUse the average molarity of acetic acid (0.0867M) to calculate the concentration in % (m/v). Then calculate the % difference between the calculated concentrations of your unknown vinegar solution with the 5.00% (w/v%) vinegar solution (check the formula for % difference in the previous lab or online). Before calculating the difference with vinegar, remember that this %(m/v) is of the diluted solution. It has been diluted 10 times.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781259911156/9781259911156_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305577213/9781305577213_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780078021558/9780078021558_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079373/9781305079373_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781118431221/9781118431221_smallCoverImage.gif)