PHYSICS:F/SCI.+ENGRS-W/WEBASSIGN
PHYSICS:F/SCI.+ENGRS-W/WEBASSIGN
10th Edition
ISBN: 9781337888479
Author: SERWAY
Publisher: CENGAGE L
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 3, Problem 33P

In Figure P3.33, the line segment represents a path from the point with position vector ( 5 i ^ + 3 j ^ ) m to the point with location ( 16 i ^ + 12 j ^ ) m . Point Ⓐ is along this path, a fraction f of the way to the destination. (a) Find the position vector of point Ⓐ in terms of f. (b) Evaluate the expression from part (a) for f = 0. (c) Explain whether the result in part (b) is reasonable. (d) Evaluate the expression for f = 1. (c) Explain whether the result in part (d) is reasonable.

Figure P3.33 Point Ⓐ is a fraction f of the distance from the initial point (5,3) to the final point (16, 12).

Chapter 3, Problem 33P, In Figure P3.33, the line segment represents a path from the point with position vector (5i+3j)m to

(a)

Expert Solution
Check Mark
To determine
The position vector of point A in terms of fraction f .

Answer to Problem 33P

The position vector of point A in terms of fraction f is A=[(5+11f)i^+(3+9f)j^]m .

Explanation of Solution

Section 1:

To determine: The horizontal position of point A that must be at a fraction f of the destination.

Answer: The horizontal position of point A that must be at a fraction f of the destination is (5+11f)m .

Explanation:

Given information:

The initial position vector is (5i^+3j^)m and final position vector is (16i^+12j^)m .

Formula to calculate the x-position of point A that must be at a fraction f of the destination is,

x=x1+f(x2x1)

  • x is the position of the point A in x-direction.
  • x1 is the initial position in x-direction.
  • x2 is the final position in x-direction.
  • f is the fraction of the destination path.

Substitute 5m for x1 and 16m for x2 .

x=5m+f(16m5m)=5m+f(11m)=(5+11f)m

Section 2:

To determine: The vertical position of point A that must be at a fraction f of the destination.

Answer: The vertical position of point A that must be at a fraction f of the destination is (3+9f)m .

Explanation:

Given information:

The initial position vector is (5i^+3j^)m and final position vector is (16i^+12j^)m .

Formula to calculate the y-position of point A that must be at a fraction of f of the destination is,

y=y1+f(y2y1)

  • y is the position of the point A in y-direction.
  • y1 is the initial position in y-direction.
  • y2 is the final position in y-direction.
  • f is the fraction of the destination path.

Substitute 3m for y1 and 12m for y2 .

y=3m+f(13m3m)=3m+f(9m)=(3+9f)m

Section 3:

To determine: The position vector of the point A that must lie at a fraction f on the destination path.

Answer: The position vector of the point A that must lie at a fraction f on the destination path is A=[(5+11f)i^+(3+9f)j^]m .

Explanation:

Given information:

The initial position vector is (5i^+3j^)m and final position vector is (16i^+12j^)m .

Formula to calculate the position vector of the point A that must lie at a fraction f on the destination path is,

A=xi^+yj^

Substitute (5+11f)m for x and (3+9f)m for y to find A .

A=[(5+11f)i^+(3+9f)j^]m

Conclusion:

Therefore, position vector of point A in terms of fraction f is A=[(5+11f)i^+(3+9f)j^]m .

(b)

Expert Solution
Check Mark
To determine
The position vector of point A for f=0 .

Answer to Problem 33P

The position vector of point A for f=0 is A=[5i^+3j^]m .

Explanation of Solution

Given information:

The initial position vector is (5i^+3j^)m and final position vector is (16i^+12j^)m .

The position vector of point A in terms of fraction f is,

A=[(5+11f)i^+(3+9f)j^]m .

Substitute 0 for f in the above expression.

A=[(5+11×0)i^+(3+9×0)j^]m=[(5+0)i^+(3+0)j^]=5i^+3j^

Conclusion:

Therefore, position vector of point A for f=0 is A=[5i^+3j^]m .

(c)

Expert Solution
Check Mark
To determine
Whether the position vector of point A for f=0 is reasonable.

Explanation of Solution

Introduction: The position vector described the position of an object relative to a fixed reference point.

Explanation:

Given information:

The initial position vector is (5i^+3j^)m and final position vector is (16i^+12j^)m .

The position vector of point A in terms of fraction f is,

A=[(5+11f)i^+(3+9f)j^]m

When the value of f is zero then the position vector of point A becomes,

A=[5i^+3j^]m

This position vector is similar to the initial position vector of the destination path. So, if the value of f is zero then the point A move to the initial point that really exist.

Conclusion:

Therefore, position vector of point A for f=0 is reasonable because the position of point A is shift to the starting point of the destination path.

(d)

Expert Solution
Check Mark
To determine
The position vector of point A for f=1 .

Answer to Problem 33P

The position vector of point A for f=1 is 16i^+12j^ .

Explanation of Solution

Given information:

The initial position vector is (5i^+3j^)m and final position vector is (16i^+12j^)m .

The position vector of point A in terms of fraction f is,

A=[(5+11f)i^+(3+9f)j^]m

Substitute 1 for f in the above expression.

A=[(5+11×1)i^+(3+9×1)j^]m=[(5+11)i^+(3+9)j^]=16i^+12j^

Conclusion:

Therefore, position vector of point A for f=1 is 16i^+12j^ .

(e)

Expert Solution
Check Mark
To determine
Whether the position vector of point A for f=1 is reasonable.

Explanation of Solution

Introduction: The position vector described the position of an object relative to a fixed reference point.

Explanation:

Given information:

The initial position vector is (5i^+3j^)m and final position vector is (16i^+12j^)m .

The position vector of point A in terms of fraction f is,

A=[(5+11f)i^+(3+9f)j^]m

When the value of f is 1 , then the position vector of point A becomes,

A=16i^+12j^

This position vector is similar to the final position vector of the destination path. So, if the value of f is 1 then the point A move to the final point that really exist.

Conclusion:

Therefore, position vector of point A for f=1 is reasonable because the position of point A is shifted to the final point of the destination path.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Question B3 Consider the following FLRW spacetime: t2 ds² = -dt² + (dx² + dy²+ dz²), t2 where t is a constant. a) State whether this universe is spatially open, closed or flat. [2 marks] b) Determine the Hubble factor H(t), and represent it in a (roughly drawn) plot as a function of time t, starting at t = 0. [3 marks] c) Taking galaxy A to be located at (x, y, z) = (0,0,0), determine the proper distance to galaxy B located at (x, y, z) = (L, 0, 0). Determine the recessional velocity of galaxy B with respect to galaxy A. d) The Friedmann equations are 2 k 8πG а 4πG + a² (p+3p). 3 a 3 [5 marks] Use these equations to determine the energy density p(t) and the pressure p(t) for the FLRW spacetime specified at the top of the page. [5 marks] e) Given the result of question B3.d, state whether the FLRW universe in question is (i) radiation-dominated, (ii) matter-dominated, (iii) cosmological-constant-dominated, or (iv) none of the previous. Justify your answer. f) [5 marks] A conformally…
SECTION B Answer ONLY TWO questions in Section B [Expect to use one single-sided A4 page for each Section-B sub question.] Question B1 Consider the line element where w is a constant. ds²=-dt²+e2wt dx², a) Determine the components of the metric and of the inverse metric. [2 marks] b) Determine the Christoffel symbols. [See the Appendix of this document.] [10 marks] c) Write down the geodesic equations. [5 marks] d) Show that e2wt it is a constant of geodesic motion. [4 marks] e) Solve the geodesic equations for null geodesics. [4 marks]
Page 2 SECTION A Answer ALL questions in Section A [Expect to use one single-sided A4 page for each Section-A sub question.] Question A1 SPA6308 (2024) Consider Minkowski spacetime in Cartesian coordinates th = (t, x, y, z), such that ds² = dt² + dx² + dy² + dz². (a) Consider the vector with components V" = (1,-1,0,0). Determine V and V. V. (b) Consider now the coordinate system x' (u, v, y, z) such that u =t-x, v=t+x. [2 marks] Write down the line element, the metric, the Christoffel symbols and the Riemann curvature tensor in the new coordinates. [See the Appendix of this document.] [5 marks] (c) Determine V", that is, write the object in question A1.a in the coordinate system x'. Verify explicitly that V. V is invariant under the coordinate transformation. Question A2 [5 marks] Suppose that A, is a covector field, and consider the object Fv=AAμ. (a) Show explicitly that F is a tensor, that is, show that it transforms appropriately under a coordinate transformation. [5 marks] (b)…

Chapter 3 Solutions

PHYSICS:F/SCI.+ENGRS-W/WEBASSIGN

Ch. 3 - Vector A has a magnitude of 29 units and points in...Ch. 3 - A force F1 of magnitude 6.00 units acts on an...Ch. 3 - Three displacements are A=200m due south, B=250m...Ch. 3 - The displacement vectors A and B shown in Figure...Ch. 3 - A roller-coaster car moves 200 ft horizontally and...Ch. 3 - A minivan travels straight north in the right lane...Ch. 3 - A person walks 25.0 north of east for 3.10 km. How...Ch. 3 - Your dog is running around the grass in your back...Ch. 3 - Given the vectors A=2.00i+6.00j and B=3.00i2.00j,...Ch. 3 - The helicopter view in Fig. P3.15 shows two people...Ch. 3 - A snow-covered ski slope makes an angle of 35.0...Ch. 3 - Consider the three displacement vectors m, m,...Ch. 3 - Vector A has x and y components of 8.70 cm and...Ch. 3 - Prob. 19PCh. 3 - Given the displacement vectors A=(3i4j+4k)m and...Ch. 3 - Vector A has a negative x component 3.00 units in...Ch. 3 - Three displacement vectors of a croquet ball are...Ch. 3 - Prob. 23PCh. 3 - Prob. 24PCh. 3 - Use the component method to add the vectors A and...Ch. 3 - A girl delivering newspapers covers her route by...Ch. 3 - A man pushing a mop across a floor causes it to...Ch. 3 - Figure P3.28 illustrates typical proportions of...Ch. 3 - Review. As it passes over Grand Bahama Island, the...Ch. 3 - In an assembly operation illustrated in Figure...Ch. 3 - Review. You are standing on the ground at the...Ch. 3 - Why is the following situation impossible? A...Ch. 3 - In Figure P3.33, the line segment represents a...Ch. 3 - You are spending the summer as an assistant...Ch. 3 - A person going for a walk follows the path shown...Ch. 3 - A ferry transports tourists between three islands....Ch. 3 - Two vectors A and B have precisely equal...Ch. 3 - Two vectors A and B have precisely equal...Ch. 3 - Review. The biggest stuffed animal in the world is...Ch. 3 - Ecotourists use their global positioning system...Ch. 3 - A vector is given by R=2i+j+3k. Find (a) the...Ch. 3 - You are working as an assistant to an air-traffic...Ch. 3 - Review. The instantaneous position of an object is...Ch. 3 - Vectors A and B have equal magnitudes of 5.00. The...Ch. 3 - A rectangular parallelepiped has dimensions a, b,...Ch. 3 - A pirate has buried his treasure on an island with...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Kinematics Part 3: Projectile Motion; Author: Professor Dave explains;https://www.youtube.com/watch?v=aY8z2qO44WA;License: Standard YouTube License, CC-BY