
EBK COLLEGE PHYSICS
10th Edition
ISBN: 8220100853050
Author: Vuille
Publisher: CENGAGE L
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 3, Problem 33P
A projectile is launched with an initial speed of 60.0 m/s at an angle of 30.0° above the horizontal. The projectile lands on a hillside 4.00 s later. Neglect air friction, (a) What is the projectile’s velocity at the highest point of its trajectory? (b) What is the straight-line distance from where the projectile was launched to where it hits its target?
Expert Solution & Answer

Trending nowThis is a popular solution!

Students have asked these similar questions
1)
Consider two positively charged particles, one of charge q0 (particle 0) fixed at the origin, and another of charge q1 (particle 1) fixed on the y-axis at (0,d1,0). What is the net force F→ on particle 0 due to particle 1?
Express your answer (a vector) using any or all of k, q0, q1, d1, i^, j^, and k^.
2)
Now add a third, negatively charged, particle, whose charge is −q2− (particle 2). Particle 2 fixed on the y-axis at position (0,d2,0). What is the new net force on particle 0, from particle 1 and particle 2?
Express your answer (a vector) using any or all of k, q0, q1, q2, d1, d2, i^, j^, and k^.
3)
Particle 0 experiences a repulsion from particle 1 and an attraction toward particle 2. For certain values of d1 and d2, the repulsion and attraction should balance each other, resulting in no net force. For what ratio d1/d2 is there no net force on particle 0?
Express your answer in terms of any or all of the following variables: k, q0, q1, q2.
A 85 turn, 10.0 cm diameter coil rotates at an angular velocity of 8.00 rad/s in a 1.35 T field, starting with the normal of the plane of the coil perpendicular to the field. Assume that the positive max emf is reached first.
(a) What (in V) is the peak emf?
7.17
V
(b) At what time (in s) is the peak emf first reached?
0.196
S
(c) At what time (in s) is the emf first at its most negative?
0.589
x s
(d) What is the period (in s) of the AC voltage output?
0.785
S
A bobsled starts at the top of a track as human runners sprint from rest and then jump into the sled. Assume they reach 40 km/h from rest after covering a distance of 50 m over flat ice. a. How much work do they do on themselves and the sled which they are pushing given the fact that there are two men of combined mass 185 kg and the sled with a mass of 200 kg? (If you haven't seen bobsledding, watch youtube to understand better what's going on.) b. After this start, the team races down the track and descends vertically by 200 m. At the finish line the sled crosses with a speed of 55 m/s. How much energy was lost to drag and friction along the way down after the men were in the sled?
Chapter 3 Solutions
EBK COLLEGE PHYSICS
Ch. 3.1 - The magnitudes of two vectors A and B are 12 units...Ch. 3.2 - Prob. 3.2QQCh. 3.2 - Prob. 3.3QQCh. 3.3 - Which of the following objects cant be...Ch. 3.3 - Consider the following controls in an automobile:...Ch. 3.4 - Suppose you are carrying a ball and running at...Ch. 3.4 - As a projectile moves in its parabolic path, where...Ch. 3 - A vector A has components Ax = 5.00 m and Ay =...Ch. 3 - Calculate (a) the x- and (b) y-components of the...Ch. 3 - Find (a) the x- and (b) y-components of R = 2A B...
Ch. 3 - A hiker walks from (x1, y1) = (4.00 km. 3.00 km)...Ch. 3 - A hiker walks 3.00 km north and then 4.00 km west,...Ch. 3 - A car is traveling east at 25.0 m/s when it turns...Ch. 3 - A skier leaves the end of a horizontal ski jump at...Ch. 3 - A catapult launches a large stone from ground...Ch. 3 - A cruise ship sails due north at 4.50 m/s while a...Ch. 3 - Prob. 1CQCh. 3 - Prob. 2CQCh. 3 - As a projectile moves in its path, is there any...Ch. 3 - Construct motion diagrams showing the velocity and...Ch. 3 - Explain whether the following particles do or do...Ch. 3 - A ball is projected horizontally from the top of a...Ch. 3 - A spacecraft drifts through space at a constant...Ch. 3 - Determine which of the following moving objects...Ch. 3 - Two projectiles are thrown with the same initial...Ch. 3 - A ball is thrown upward in the air by a passenger...Ch. 3 - A projectile is launched at some angle to the...Ch. 3 - A baseball is thrown from the outfield toward the...Ch. 3 - A student throws a heavy red ball horizontally...Ch. 3 - A car moving around a circular track, with...Ch. 3 - As an apple tree is transported by a truck moving...Ch. 3 - Prob. 1PCh. 3 - Vector A has a magnitude of 8.00 units and makes...Ch. 3 - Vector A is 3.00 units in length and points along...Ch. 3 - Three displacements are A = 200 m due south, R =...Ch. 3 - A roller coaster moves 200 ft horizontally and...Ch. 3 - An airplane flies 200 km due west from city A to...Ch. 3 - A plane flies from base camp to lake A, a distance...Ch. 3 - A force F1, of magnitude 6.00 units acts on an...Ch. 3 - A man in a maze makes three consecutive...Ch. 3 - Prob. 10PCh. 3 - The magnitude of vector A is 35.0 units and points...Ch. 3 - A figure skater glides along a circular path of...Ch. 3 - A girl delivering newspapers covers her route by...Ch. 3 - A hiker starts at his camp and moves the following...Ch. 3 - A vector has an x-component of 25.0 units and a...Ch. 3 - A quarterback takes the ball from the line of...Ch. 3 - The eye of a hurricane passes over Grand Bahama...Ch. 3 - A map suggests that Atlanta is 730 miles in a...Ch. 3 - A commuter airplane starts from ar. airport and...Ch. 3 - The helicopter view in Figure P3.20 shows two...Ch. 3 - A novice golfer on the green takes three strokes...Ch. 3 - One of the fastest recorded pitches in major...Ch. 3 - A student stands at the edge of a cliff and throws...Ch. 3 - A rock is thrown upward from the level ground in...Ch. 3 - The best leaper in the animal kingdom is the puma,...Ch. 3 - The record distance in the sport of throwing...Ch. 3 - A placekicker must kick a football from a point...Ch. 3 - From the window of a building, a ball is tossed...Ch. 3 - A brick is thrown upward from the top of a...Ch. 3 - An artillery shell is fired with an initial...Ch. 3 - A car is parked on a cliff overlooking the ocean...Ch. 3 - A fireman d = 50.0 m away from a burning building...Ch. 3 - A projectile is launched with an initial speed of...Ch. 3 - A playground is on the flat roof of a city school,...Ch. 3 - A jet airliner moving initially at 3.00 102 mi/h...Ch. 3 - A car travels due east with a speed of 50.0 km/h....Ch. 3 - A bolt drops from the ceiling of a moving train...Ch. 3 - A Coast Guard cutter detects an unidentified ship...Ch. 3 - An airplane maintains a speed of 630 km/h relative...Ch. 3 - Suppose a chinook salmon needs to jump a waterfall...Ch. 3 - A river has a steady speed of 0.500 m/s. A student...Ch. 3 - This is a symbolic version of Problem 29. A river...Ch. 3 - An airplane maintains a speed of 630 km/h relative...Ch. 3 - A moving walkway at an airport has a speed v1 and...Ch. 3 - How long does it take ail automobile traveling in...Ch. 3 - You can use any coordinate system you like to...Ch. 3 - A Nordic jumper goes off a ski jump at an angle of...Ch. 3 - In a local diner, a customer slides an empty...Ch. 3 - Towns A and B in Figure P3.35 are 80.0 km apart. A...Ch. 3 - A chinook salmon has a maximum underwater speed of...Ch. 3 - A rocket is launched at an angle of 53.0 above the...Ch. 3 - Two canoeists in identical canoes exert the same...Ch. 3 - (a) If a person can jump a maximum horizontal...Ch. 3 - A farm truck travels due east with a constant...Ch. 3 - A home run is hit in such a way that the baseball...Ch. 3 - A ball is thrown straight upward and returns to...Ch. 3 - A quarterback throws a football toward a receiver...Ch. 3 - A 2.00-m-tall basketball player is standing on the...Ch. 3 - In a very popular lecture demonstration, a...Ch. 3 - Figure P3.60 illustrates the difference in...Ch. 3 - By throwing a ball at an angle of 45, a girl can...Ch. 3 - The equation of a parabola is y = ax2 + bx + c,...Ch. 3 - A hunter wishes to cross a river that is 1.5 km...Ch. 3 - When baseball outfielders throw the ball, they...Ch. 3 - A daredevil is shot out of a cannon at 45.0 to the...Ch. 3 - Chinook salmon are able to move upstream faster by...Ch. 3 - A student derides to measure the muzzle velocity...Ch. 3 - A golf ball with an initial speed of 50.0 m/s...Ch. 3 - A landscape architect is planning an artificial...Ch. 3 - One strategy in a snowball fight is to throw a...Ch. 3 - A dart gun is fired while being held horizontally...Ch. 3 - The determined Wile E. Coyote is out once more to...Ch. 3 - A truck loaded with cannonball watermelons stops...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Match the people in column A to their contribution toward the advancement of microbiology, in column B. Column ...
Microbiology: An Introduction
Separate the list P,F,V,,T,a,m,L,t, and V into intensive properties, extensive properties, and nonproperties.
Fundamentals Of Thermodynamics
On what molecule does the anticodon appear? Explain the role of this molecule in protein synthesis.
Human Physiology: An Integrated Approach (8th Edition)
Give the IUPAC name for each compound.
Organic Chemistry
Why is it necessary to be in a pressurized cabin when flying at 30,000 feet?
Anatomy & Physiology (6th Edition)
Describe the evolution of mammals, tracing their synapsid lineage from early amniote ancestors to true mammals....
Loose Leaf For Integrated Principles Of Zoology
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- For what type of force is it not possible to define a potential energy expression?arrow_forward10. Imagine you have a system in which you have 54 grams of ice. You can melt this ice and then vaporize it all at 0 C. The melting and vaporization are done reversibly into a balloon held at a pressure of 0.250 bar. Here are some facts about water you may wish to know. The density of liquid water at 0 C is 1 g/cm³. The density of ice at 0 C is 0.917 g/cm³. The enthalpy of vaporization of liquid water is 2.496 kJ/gram and the enthalpy of fusion of solid water is 333.55 J/gram.arrow_forwardConsider 1 mole of supercooled water at -10°C. Calculate the entropy change of the water when the supercooled water freezes at -10°C and 1 atm. Useful data: Cp (ice) = 38 J mol-1 K-1 Cp (water) 75J mol −1 K -1 Afus H (0°C) 6026 J mol −1 Assume Cp (ice) and Cp (water) to be independent of temperature.arrow_forward
- The molar enthalpy of vaporization of benzene at its normal boiling point (80.09°C) is 30.72 kJ/mol. Assuming that AvapH and AvapS stay constant at their values at 80.09°C, calculate the value of AvapG at 75.0°C, 80.09°C, and 85.0°C. Hint: Remember that the liquid and vapor phases will be in equilibrium at the normal boiling point.arrow_forward3. The entropy of an ideal gas is S = Nkg In V. Entropy is a state function rather than a path function, and in this problem, you will show an example of the entropy change for an ideal gas being the same when you go between the same two states by two different pathways. A. Express ASV = S2 (V2) - S₁(V1), the change in entropy upon changing the volume from V₁to V2, at fixed particle number N and energy, U. B. Express ASN = S₂(N₂) - S₁ (N₁), the change in entropy upon changing the particle number from N₁ to N2, at fixed volume V and energy U. C. Write an expression for the entropy change, AS, for a two-step process (V₁, N₁) → (V2, N₁) → (V2, N₂) in which the volume changes first at fixed particle number, then the particle number changes at fixed volume. Again, assume energy is constant.arrow_forwardPlease don't use Chatgpt will upvote and give handwritten solutionarrow_forward
- 6. We used the constant volume heat capacity, Cv, when we talked about thermodynamic cycles. It acts as a proportionality constant between energy and temperature: dU = C₁dT. You can also define a heat capacity for constant pressure processes, Cp. You can think of enthalpy playing a similar role to energy, but for constant pressure processes δαρ C = (37) - Sup Ср ат P = ат Starting from the definition of enthalpy, H = U + PV, find the relationship between Cy and Cp for an ideal gas.arrow_forwardPure membranes of dipalmitoyl lecithin phospholipids are models of biological membranes. They melt = 41°C. Reversible melting experiments indicate that at Tm AHm=37.7 kJ mol-1. Calculate: A. The entropy of melting, ASm- B. The Gibbs free energy of melting, AGm- C. Does the membrane become more or less ordered upon melting? D. There are 32 rotatable CH2 CH2 bonds in each molecule that can rotate more freely if the membrane melts. What is the increase in multiplicity on melting a mole of bonds?arrow_forward5. Heat capacity often has a temperature dependence for real molecules, particularly if you go over a large temperature range. The heat capacity for liquid n-butane can be fit to the equation Cp(T) = a + bT where a = 100 J K₁₁ mol¹ and b = 0.1067 J K² mol¹ from its freezing point (T = 140 K) to its boiling point (T₁ = 270 K). A. Compute AH for heating butane from 170 K to 270 K. B. Compute AS for the same temperature range.arrow_forward
- 4. How much energy must be transferred as heat to cause the quasi-static isothermal expansion of one mole of an ideal gas at 300 K from PA = 1 bar to PB = 0.5 bar? A. What is VA? B. What is VB? C. What is AU for the process? D. What is AH for the process? E. What is AS for the process?arrow_forward1. The diagram shows the tube used in the Thomson experiment. a. State the KE of the electrons. b. Draw the path of the electron beam in the gravitational field of the earth. C. If the electric field directed upwards, deduce the direction of the magnetic field so it would be possible to balance the forces. electron gun 1KVarrow_forwardas a hiker in glacier national park, you need to keep the bears from getting at your food supply. You find a campground that is near an outcropping of ice. Part of the outcropping forms a feta=51.5* slopeup that leads to a verticle cliff. You decide that this is an idea place to hang your food supply out of bear reach. You put all of your food into a burlap sack, tie a rope to the sack, and then tie a bag full of rocks to the other end of the rope to act as an anchor. You currently have 18.5 kg of food left for the rest of your trip, so you put 18.5 kg of rocks in the anchor bag to balance it out. what happens when you lower the food bag over the edge and let go of the anchor bag? Determine the acceleration magnitude a of the two-bag system when you let go of the anchor bag?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
- An Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill

University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning

An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Kinematics Part 3: Projectile Motion; Author: Professor Dave explains;https://www.youtube.com/watch?v=aY8z2qO44WA;License: Standard YouTube License, CC-BY