Introduction To Health Physics
5th Edition
ISBN: 9780071835275
Author: Johnson, Thomas E. (thomas Edward), Cember, Herman.
Publisher: Mcgraw-hill Education,
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 3, Problem 3.38P
To determine
The energy of the resultant photon.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The two nuclei in the nitric oxide (NO) molecule are 0.1154 nm apart. The mass of the most common nitrogen atom is 2.326 * 10-26 kg, and the mass of the most common oxygen atom is 2.656 * 10-26 kg. Find the energies, in meV, of the lowest three rotational energy levels of NO.
The J = 0 J = 1 rotational absorption line occurs at wavelength 0.0026
in C12016 and at 0.00272 m in CxO¹6. Find the mass number of the unknown
Carbon isotope.
To obtain the most precise value of BE from the equation BE=[ZM(1H)+ Nmn]c2 − m(AX)c2 , we should take into account the binding energy of the electrons in the neutral atoms. Will doing this produce a larger or smaller value for BE? Why is this effect usually negligible?
Chapter 3 Solutions
Introduction To Health Physics
Ch. 3 - Prob. 3.1PCh. 3 - Prob. 3.2PCh. 3 - Prob. 3.3PCh. 3 - Prob. 3.4PCh. 3 - Calculate the current due to the hydrogen electron...Ch. 3 - Prob. 3.6PCh. 3 - Prob. 3.7PCh. 3 - Prob. 3.8PCh. 3 - Prob. 3.9PCh. 3 - Prob. 3.10P
Ch. 3 - Prob. 3.11PCh. 3 - Prob. 3.12PCh. 3 - Prob. 3.14PCh. 3 - Prob. 3.15PCh. 3 - Prob. 3.16PCh. 3 - Prob. 3.17PCh. 3 - Prob. 3.18PCh. 3 - Prob. 3.19PCh. 3 - Prob. 3.20PCh. 3 - Prob. 3.21PCh. 3 - Prob. 3.22PCh. 3 - If 9 g of NaC1 were dissolved in 1 L of water,...Ch. 3 - Prob. 3.24PCh. 3 - What is the binding energy of the last neutron in...Ch. 3 - Prob. 3.26PCh. 3 - Prob. 3.27PCh. 3 - Prob. 3.28PCh. 3 - Prob. 3.29PCh. 3 - Prob. 3.30PCh. 3 - Prob. 3.31PCh. 3 - Prob. 3.32PCh. 3 - What is the binding energy of the last neutron in...Ch. 3 - Prob. 3.34PCh. 3 - Prob. 3.35PCh. 3 - Prob. 3.36PCh. 3 - Prob. 3.37PCh. 3 - Prob. 3.38PCh. 3 - Prob. 3.39PCh. 3 - Prob. 3.40PCh. 3 - Prob. 3.41P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The two nuclei in the carbon monoxide (CO) molecules are 0.1128 nm apart. The mass of the carbon atom is 1.993x10-26 kg. The mass of the oxygen atom is 2.656x10-26 kg. What is the first excited rotational energy level for the CO molecule? (Give the your answer in meV.)arrow_forwardThe energy required to break one bond in DNA is 10^−20J. This value in eV is nearly ?arrow_forwardIn positron-emission tomography (PET) used in medical research and diagnosis, compounds containing unstable nuclei that emit positrons are introduced into the brain, destined for a site of interest in the brain. When a positron is emitted, it goes only a short distance before coming nearly to rest. It forms a bound state with an electron, called "positronium", which is rather similar to a hydrogen atom. The binding energy of positronium is very small compared to the rest energy of an electron. After a short time the positron and electron annihilate. In the annihilation, the positron and the electron disappear, and all of their rest energy goes into two photons (particles of light) which have zero mass; all their energy is kinetic energy. These high energy photons, called "gamma rays", are emitted at nearly 180° to each other. What energy of gamma ray (in MeV, million electron volts) should each of the detectors be made sensitive to? (The mass of an electron or positron is 9 x 10-31 kg.…arrow_forward
- Two electrons in the nucleus of a 238U atom are separated by a distance of 8 fm. What is the potential energy of the arrangement? A) 179.77 keVB) 2.25×10 43 eVC) 4.61×10 −33 keVD) 3.596 eVarrow_forwardwith n= 4. the energy that must be absorbed by the atom is 12.75EV 10.20EV 12.09ev 2.55ev 1.209evarrow_forwardProve that the binding energy between two inert atoms U=-A/R6 by two mechanism: 1) Quantum mechanical approach as in the book. 2) Electrostatic approach as a dipole dipole interaction.arrow_forward
- The electron in the hydrogen atom (in its ground state) orbits the nucleus at a distance of 0.5292 Å. (a) Calculate the gravitational force and (b) the electrostatic force of attraction between the two. (c) Comment on the magnitude and the importance of these two forces. [G, gravitational constant = 6.672 x 10-11 N m2 kg-2; 4+Єo = 1.113 x 10-10 C2 m-1 J-1]arrow_forwardThe energy required to remove an inner K-shell electron from a silver atom is 25.6 keV. Compare this electron binding energy (the most tightly bound electron) with the binding energy of the most loosely bound proton of 10747Ag.arrow_forwardQuestion earrow_forward
- Consider the following four transitions in ahydrogen atom:(i) ni = 2, nf = 6 (ii) ni = 2, nf = 8(iii) ni = 7, nf = 8 (iv) ni = 6, nf = 2Find (a) the longest- and (b) the shortest-wavelength photon thatcan be emitted or absorbed by these transitions. Give the valueof the wavelength in each case. (c) For which of these transitionsdoes the atom lose energy? Explain.arrow_forwardQuestion 6. a) Photons of incoming radiation have an energy of E = 2500 kJ/mol. Calculate the wavelength (in nm) of those photons. b) Would photons from part (a) be able to ionize a Be3+ ion if the electron is found in n=3? Show a calculation to support your answer. c). Consider the following balanced combustion reaction: C7H16(1) + 11 O2(g) → 7 CO2(e) + 8 H2O(g) AcH°= -1160 kJ/mol If the density of C7H16(1) is 0.68 g/mL, how much heat (in J and scientific notation) is released if 125 mL of C7H16()) undergoes complete combustion?arrow_forwardif the energy levels for a hydrogenic atom are given by En=-13.6/n^2eV, the ionization energy of the U91+ ion in its ground state is: a) 13.6eV , b) 1,251.2eV, c) 1,237.6eV, d) 115,110.4eV, e) 112,621.6eVarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning