Introduction To Health Physics
5th Edition
ISBN: 9780071835275
Author: Johnson, Thomas E. (thomas Edward), Cember, Herman.
Publisher: Mcgraw-hill Education,
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 3, Problem 3.37P
To determine
To Calculate:The energy of the resultant photon.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
1.a. A 14-gram ovarian tumor is treated using a sodium phosphate solution in which the phosphorus atoms are the radioative phosphorus-32 isotope with a half-life of 14.3 days and which decays via beta emision (RBE=1) with an energy of 1.71 MeV. Half of the sodium phosphate is absorbed by the tumor and deposits 9.0 J energy into it. The other half of the solution is absorbed throughout the patient's tissues, also depositing 9.0 J of energy into the 50.0 kg of body tissues.
i. What is the dose ( in gray and rem) that the tumor receives?
ii. What is the dose ( in milligray and rem) that the rest of the tissues receives?
b. Photoelectrons from a material with a binding energy of 2.71 eV are ejected by 420-nm photons. Once ejected, how long does it take these electrons to travel 2.50cm to a detected device?
c.The heating element in an electric kettle is rated as 2.0kW. If the waterin the kettle is at 1000.0 oC, what volume of water will be converted in to steam in…
The isotope iron-56 has a nuclear mass of 55.9349375 u. Calculate the binding energy of iron-56 using the following information:
Mass of Proton: 1.007825 u, Mass of Neutron: 1.008665 u, 1 u = 931.5 MeV
a
3.274 eV
b
6.153 eV
c
8.790 eV
d
9.624 eV
What is the binding energy required for the element Beryllium, which has an atomic mass of 9.01 u? [Use the mass of the electron as 0.00054858u, the mass of the proton as 1.007276u and the mass of the neutron as 1.008665u.] u
Chapter 3 Solutions
Introduction To Health Physics
Ch. 3 - Prob. 3.1PCh. 3 - Prob. 3.2PCh. 3 - Prob. 3.3PCh. 3 - Prob. 3.4PCh. 3 - Calculate the current due to the hydrogen electron...Ch. 3 - Prob. 3.6PCh. 3 - Prob. 3.7PCh. 3 - Prob. 3.8PCh. 3 - Prob. 3.9PCh. 3 - Prob. 3.10P
Ch. 3 - Prob. 3.11PCh. 3 - Prob. 3.12PCh. 3 - Prob. 3.14PCh. 3 - Prob. 3.15PCh. 3 - Prob. 3.16PCh. 3 - Prob. 3.17PCh. 3 - Prob. 3.18PCh. 3 - Prob. 3.19PCh. 3 - Prob. 3.20PCh. 3 - Prob. 3.21PCh. 3 - Prob. 3.22PCh. 3 - If 9 g of NaC1 were dissolved in 1 L of water,...Ch. 3 - Prob. 3.24PCh. 3 - What is the binding energy of the last neutron in...Ch. 3 - Prob. 3.26PCh. 3 - Prob. 3.27PCh. 3 - Prob. 3.28PCh. 3 - Prob. 3.29PCh. 3 - Prob. 3.30PCh. 3 - Prob. 3.31PCh. 3 - Prob. 3.32PCh. 3 - What is the binding energy of the last neutron in...Ch. 3 - Prob. 3.34PCh. 3 - Prob. 3.35PCh. 3 - Prob. 3.36PCh. 3 - Prob. 3.37PCh. 3 - Prob. 3.38PCh. 3 - Prob. 3.39PCh. 3 - Prob. 3.40PCh. 3 - Prob. 3.41P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- What minimum energy E(min) is needed to remove a neutron from K40 and so convert it to K39? The atomic masses of the two isotopes are 39.964000 and 38.963708 u, respectively. E(min) = ? eVarrow_forwardUse the below values for this problem. Please note that the mass for H is for the entire atom (proton & electron). Neutron: m = 1.67493x10-27 kg = 1.008665 u = 939.57 MeV/c² . ¹H: mH = 1.67353x10-27 kg = 1.007825 u = 938.78 MeV/c² 1 1 u = 1.6605x10-27 kg = 931.5 MeV/c² . Consider the following decay: 239 Pu 235 U+ a. 239 Pu has a mass of 239.0521634 u, 235 U has a mass of 235.0439299 u, and a has a mass of 4.002603 u. 94 92 94 92 Determine the disintegration energy (Q-value) in MeV. Q = Determine the binding energy (in MeV) for 239 Pu. 94 EB =arrow_forwardHow many kJ of energy are released to form one mole of 133Cs from protons and neutrons if the atom has a mass of 132.905429 amu? Please remember to include the mass of electrons in the calculation. Given the mass of a proton is 1.007825 amuarrow_forward
- An Erbium-166 nucleus contains 68 protons. The atomic mass of a neutral Erbium-166 atom is 165.930u, where u = 931.5 MeV/c². In this question you may use that the mass of a proton is 938.27 MeV/c², the mass of a neutron is 939.57 MeV/e² and the mass of an electron is 0.511 MeV/c². i. Calculate the nuclear binding energy per nucleon, giving your answer in units of MeV. ii. Electrons with an energy of 0.5 GeV are scattered off the nucleus. Estimate the scattering angle of the first minimum in the resulting diffraction pattern. iii. Briefly comment on whether or not you expect this nucleus to be spherical, and what consequence this has for excited states of the nucleus in the collective model.arrow_forwardScientists can determine the age of ancient objects by the method of radiocarbon dating. The bombardment of the upper atmosphere by cosmic rays converts nitrogen to a radioactive isotope of carbon, 14C, with a half-life of about 5730 years. Vegetation absorbs carbon dioxide through the atmosphere and animal life assimilates ¹4C through food chains. When a plant or animal dies, it stops replacing its carbon and the amount of 14C begins to decrease through radioactive decay. Therefore the level of radioactivity must also decay exponentially. A parchment fragment was discovered that had about 75% as much 14C radioactivity as does plant material on earth today. Estimate the age of the parchment. (Round your answer to the nearest whole number.) yr Need Help? Watch It Additional Materials THERarrow_forwardA sample of Co (atomic mass= 59.933820u) undergoes ß decay emitting electrons with maximum kinetic energy 0.31 MeV. If the ground state mass of the Ni atom is 59.930788u, then calculate the excitation energy of the state to which the decay occurs.arrow_forward
- The element 218Po (Polonium-218, Z = 84, atomic mass 218.008966 u) can decay through the emission of a β-particle to 218At (Astatine-218, Z = 85, atomic mass 218.00880 u). If all of the energy released is carried away by the β-particle's kinetic energy, calculate the kinetic energy of the β-particle.answer in units of MeV, correct to two decimal places.arrow_forwardIn positron-emission tomography (PET) used in medical research and diagnosis, compounds containing unstable nuclei that emit positrons are introduced into the brain, destined for a site of interest in the brain. When a positron is emitted, it goes only a short distance before coming nearly to rest. It forms a bound state with an electron, called "positronium", which is rather similar to a hydrogen atom. The binding energy of positronium is very small compared to the rest energy of an electron. After a short time the positron and electron annihilate. In the annihilation, the positron and the electron disappear, and all of their rest energy goes into two photons (particles of light) which have zero mass; all their energy is kinetic energy. These high energy photons, called "gamma rays", are emitted at nearly 180° to each other. What energy of gamma ray (in MeV, million electron volts) should each of the detectors be made sensitive to? (The mass of an electron or positron is 9 x 10-31 kg.…arrow_forwardA Boron -12 atom ( 12.01435u) beta -decays into a carbon atom ( 12.00000 u). What is the maximum kinetic energy of the emitted electron? ( Hint: the kinetic energy of the electron will be the maximum if the antineutrino kas zero energy).arrow_forward
- The "Triple-Alpha Process" is a nuclear fusion process that fuses three "He into one 12C, 3 4He → 12C+ energy. (The 4He nucleus is called an "alpha particle," which is related to alpha radiation.) If the nuclei are all in their ground states, and have negligible kinetic energy, how much energy is released in this reaction? Of course, this is not how quantum mechanics works. It's much more likely for this process to occur if the total energy of three "He particles is equal to one of the allowed energy states of 12C. It turns out that there is an excited state of the 12C nucleus, call it 12C*, that is 7.656 MeV above the ground state nucleus. Calculate the mass of 12C* and its binding energy.arrow_forwardA nuclear reaction is represented by: "N+H→C+He Given N has a mass of 14.003 074 u; C has a mass of 12.000 000 u; H has a mass of 2.014 102 u; and He has a mass of 4.002 603 u. (i) Identify the atomic number, Z and mass number, A of C. (ii) Calculate the energy released (in eV) in this reaction if there are 2.50 g of C detected at the end of the process. (Note: lu = 931.5 MeV /c)arrow_forwardWhat is the energy of the antineutrino, if a phosphorus-32 atom ( 31.97390u) beta-decays into a sulphur-32 atom ( 31.97207u), and the kinetic energy of the accompanying electron is 0.90 Mev? Hint: difference in mass ( mass defect) is converted into the kinetic energy of the electron and the energy of the antineutrino.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning