(a)
Equation of motion of the roller in terms of its rotational velocity,

Answer to Problem 3.33P
Explanation of Solution
Given:
Roller radius = R
Inertia of roller =
Mass of roller =
Weight of roller = 800N
Diameter of roller = 0.4m
The roller does not slip.
Concept used:
The motion of this object is defined by its translational motion in the plane and its rotational motion about an axis perpendicular to the plane. Two force equations describe the translational motion, and a moment equation is needed to describe the rotational motion.
For an objects’ planar motion which rotates only about an axis perpendicular to the plane, the equation of motion can be written down using Newton’s Second Law.
Equation of Motion:
Where
Using Newton’s laws for plane motion,
Where,
Derivation of Equation of motion:
Free body diagram of the roller:
Equations describing the translational motion in the x -direction:
The acceleration,
v is the translational velocity.
Equation describing the rotational motion:
Substitute
Assuming the roller does not slip,
Substituting this in
Inertia of roller,
Substituting inertia in equation
Substituting the values
Conclusion:
Equation of motion of the roller in terms of its rotational velocity,
(b)
Equation of motion of the roller in terms of its displacement,

Answer to Problem 3.33P
Explanation of Solution
Given:
Roller radius = R
Inertia of roller =
Mass of roller =
Weight of roller = 800N
Diameter of roller = 0.4m
The roller does not slip.
Concept used:
The motion of this object is defined by its translational motion in the plane and its rotational motion about an axis perpendicular to the plane. Two force equations describe the translational motion, and a moment equation is needed to describe the rotational motion.
For an objects’ planar motion which rotates only about an axis perpendicular to the plane, the equation of motion can be written down using Newton’s Second Law.
Equation of Motion:
Where
Using Newton’s laws for plane motion,
Where,
Derivation of Equation of motion:
Free body diagram of the roller:
Equations describing the translational motion in the x -direction:
The acceleration,
v is the translational velocity.
Equation describing the rotational motion:
Substitute
Assuming the roller does not slip,
Substituting this in
Inertia of roller,
Substituting inertia in equation
Substituting the values
Conclusion:
Equation of motion of the roller in terms of its rotational velocity,
Want to see more full solutions like this?
Chapter 3 Solutions
EBK SYSTEM DYNAMICS
- Show work if any equations or calculations are used.What is the main alloying element and carbon percentage of SAE-AISI 4621 Steel?arrow_forwardThe particle has a mass of 0.5 kg and is confined to move along the smooth horizontal slot due to the rotation of the arm OA. Determine the force of the rod on the particle and the normal force of the Isot on the particle when 0 = 30°. The rod is rotating with a angular velocity of ė = 2rad/s and an angular acceleration of = 3rad/s². Assume the particle only contacts one side of the slot at any instant. To check your answer, please enter the normal force of the slot onto the particle in Newtons. A * = 2 rad/s -0- 0.5 marrow_forwardSolve, use engineering economic tablesarrow_forward
- Solve, use engineering economic tablesarrow_forwardQu 2 Calcium oxide (CaO) a white, caustic, alkaline solid that reacts vigorously with water to produce calcium hydroxide, releasing heat in the process. It is used in various industrial applications, including cement production and water treatment. The ionic radii of the ions are: TCa2+= 0.100 nm and roz-= 0.140 nm. On the basis of this information answer the following questions:Number 1 through 4 I need to show all work step by step problemsarrow_forwardShow work if any equations or calculations are used. Assuming hole basis, find the shaft and hole dimensions for a sliding fit using a basic hole size of 20mm. Show the max and minimum size for both hole and shaft. Utilize the equations and tables in the appendix.arrow_forward
- Show work if any equations or calculations are used. A milling machine is equipped with a 1” diameter end mill. During a facingoperation, the spindle is running at 275 RPM. The depth of cut is 0.04” and linear feed rate is 2” per minute. Find: (a) Cutting speed, (b) Material Removal Ratearrow_forwardL1 = 5.7m, L2 = 1m, L3 = 1.2m, L4 = 1m, L5 = 0.2, L6 = 0.5m, v2 = 4.8m/s. The solutions should include, but not be limited to, the equations used tosolve the problems, the charts used to solve the problems, detailed working,choice of variables, the control volume considered, justification anddiscussion of results etc.If determining the friction factor, the use of both Moody chart and empiricalequations should be used to verify the validity of the valuearrow_forwardPlease identify the marked points of the stress-strain curve (Write on graph next to corresponding letter) Stress, σ A D (slope of line) B. C Strain, &arrow_forward
- r Q2. A bracket is attached to a vertical column by means of six identical bolts as shown in Fig. 1. It is subjected to an eccentric force of P-80 kN at a distance of 200 mm from the center of column. What is the magnitude of maximum shear force and which bolt carry it? P= 80 kN 200 Fig. 1 1 2- 75 6 30 75 → 5 .5 1- 50 10-50-1arrow_forward3. The attachment shown in the Fig.2 is made of 1040 HR. The static force is 30 kN. Specify the weldment (give the pattern, electrode number, type of weld, length of weld, and leg size). 30 kN Fig. 2 500 All dimension in mm 100 (15 marks)arrow_forwardฉันต้องการหา อุณหภูมิสุดท้ายของกระบวนการนี้และงานของกระบวนการนี้มีค่าเท่าใดarrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





