Concept explainers
(a)
Interpretation:
The MO resulting from the given orbital interaction is to be drawn.
Concept introduction:
When atomic orbitals (AOs) of the same phase interact, they result in a bonding molecular orbital (MO) that is lower in energy than the individual AOs.

Answer to Problem 3.1P
The MO resulting from the given orbital interaction can be drawn as follows:
Explanation of Solution
The orbital interaction shows two orbitals that are lightly shaded. Both have the same negative phase. Since the phases of both are the same, there will be constructive interference, resulting in a bonding MO of negative phase.
The MO resulting from the given orbital interaction can be drawn as follows:
The interaction between orbitals of the same phase results in the formation of a bonding MO.
(b)
Interpretation:
Whether the resulting MO is unique compared to the one shown on the right of Figure 3-6a is to be determined.
Concept introduction:
When atomic orbitals (AOs) of the same phase interact, the resulting molecular orbital (MO) has a lower energy than the separate AOs. The phases of the interacting orbitals may be both positive or both negative. The resulting stabilization (lowering of energy) is the same for both.

Answer to Problem 3.1P
The MO resulting from the interaction shown will not be unique compared to the one shown in Figure 3-6a.
Explanation of Solution
The interaction in this case is between AOs of negative phases (light shading). Since the phases are the same, the interaction will result in constructive interference, increasing the electron density between the two nuclei. This will lower the energy of the MO compared to the individual AOs. The extent to which the energy is lowered will be the same as in case of the interaction shown in Figure 3-6a. This is because the interacting orbitals are same except for a different phase.
Therefore, the MO resulting from the interaction shown will not be unique compared to the one in Figure 3-6a.
The interaction between AOs of same phase results in a bonding MO with the same stabilization, whether their phases are both positive or both negative.
Want to see more full solutions like this?
Chapter 3 Solutions
EBK GET READY FOR ORGANIC CHEMISTRY
- Identify the missing organic reactants in the following reaction: X + Y H+ two steps Note: This chemical equation only focuses on the important organic molecules in the reaction. Additional inorganic or small-molecule reactants or products (like H2O) are not shown. In the drawing area below, draw the skeletal ("line") structures of the missing organic reactants X and Y. You may draw the structures in any arrangement that you like, so long as they aren't touching. Click and drag to start drawing a structure. Х :arrow_forwardDraw the mechanism of friedel-crafts acylation using acetyl chloride of m-Xylenearrow_forwardI need help naming these in IUPACarrow_forward
- H R Part: 1/2 :CI: is a/an electrophile Part 2 of 2 Draw the skeletal structure of the product(s) for the Lewis acid-base reaction. Include lone pairs and formal charges (if applicable) on the structures. 4-7: H ö- H Skip Part Check X :C1: $ % L Fi Click and drag to start drawing a structure. MacBook Pro & ㅁ x G 0: P Add or increase positive formal cha Save For Later Submit ©2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Centearrow_forwardDraw the friedel-crafts acylation mechanism of m-Xylenearrow_forwardDon't used hand raiting and don't used Ai solutionarrow_forward
- 1. Base on this experimental results, how do you know that the product which you are turning in is methyl 3-nitrobenzoate(meta substituted product ) rather than either of the other two products? 2. What observation suggests that at least a small amount of one or both of the other two isomers are in the mother liquor?arrow_forwardExplain Huckel's rule.arrow_forwardhere is my question can u help me please!arrow_forward
- Organic Chemistry: A Guided InquiryChemistryISBN:9780618974122Author:Andrei StraumanisPublisher:Cengage Learning
