A simple pendulum (a mass swinging at the end of a string) swings back and forth in a circular arc. What is the direction of the acceleration of the mass when it is at the ends of the swing? At the midpoint? In each case, explain how you obtained your answer.
A simple pendulum (a mass swinging at the end of a string) swings back and forth in a circular arc. What is the direction of the acceleration of the mass when it is at the ends of the swing? At the midpoint? In each case, explain how you obtained your answer.
A simple pendulum (a mass swinging at the end of a string) swings back and forth in a circular arc. What is the direction of the acceleration of the mass when it is at the ends of the swing? At the midpoint? In each case, explain how you obtained your answer.
Expert Solution & Answer
To determine
The direction of acceleration of mass when it is at the end of swing and at midpoint.
Answer to Problem 3.1DQ
There is zero acceleration at end point while direction of tangential acceleration changes from zero.
Explanation of Solution
When the mass reaches at end points the tangential force acts on the mass towards the mean position which results the net acceleration acts towards midpoint.
When the mass reaches at the midpoint, the gravitational force balances the tension in the string. So the resultant force on the mass is zero which results the net acceleration becomes zero.
Figure 1
Conclusion: There is zero acceleration at end point while direction of tangential acceleration changes from zero.
Want to see more full solutions like this?
Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
You're on an interplanetary mission, in an orbit around the Sun. Suppose you make a maneuver that brings your perihelion in closer to the Sun but leaves your aphelion unchanged. Then you must have
Question 2 options:
sped up at perihelion
sped up at aphelion
slowed down at perihelion
slowed down at aphelion
The force of the quadriceps (Fq) and force of the patellar tendon (Fp) is identical (i.e., 1000 N each). In the figure below angle in blue is Θ and the in green is half Θ (i.e., Θ/2). A) Calculate the patellar reaction force (i.e., R resultant vector is the sum of the horizontal component of the quadriceps and patellar tendon force) at the following joint angles: you need to provide a diagram showing the vector and its components for each part. a1) Θ = 160 degrees, a2) Θ = 90 degrees. NOTE: USE ONLY TRIGNOMETRIC FUNCTIONS (SIN/TAN/COS, NO LAW OF COSINES, NO COMPLICATED ALGEBRAIC EQUATIONS OR ANYTHING ELSE, ETC. Question A has 2 parts!
The force of the quadriceps (Fq) and force of the patellar tendon (Fp) is identical (i.e., 1000 N each). In the figure below angle in blue is Θ and the in green is half Θ (i.e., Θ/2). A) Calculate the patellar reaction force (i.e., R resultant vector is the sum of the horizontal component of the quadriceps and patellar tendon force) at the following joint angles: you need to provide a diagram showing the vector and its components for each part. a1) Θ = 160 degrees, a2) Θ = 90 degrees. NOTE: USE DO NOT USE LAW OF COSINES, NO COMPLICATED ALGEBRAIC EQUATIONS OR ANYTHING ELSE, ETC. Question A has 2 parts!
Chapter 3 Solutions
Mastering Physics with Pearson eText -- Standalone Access Card -- for University Physics with Modern Physics (14th Edition)
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.