Process Dynamics And Control, 4e
Process Dynamics And Control, 4e
16th Edition
ISBN: 9781119385561
Author: Seborg, Dale E.
Publisher: WILEY
Question
Book Icon
Chapter 3, Problem 3.19E
Interpretation Introduction

(a)

Interpretation:

The liquid level response, y(t) for the sudden change in u(t) from 0 to 1 m3 at t=0 is to be calculated.

Concept introduction:

For a function f(t), the Laplace transform is given by,

F(s)=L[f(t)]=0f(f)estdt …… (1)

Here, F(s) represents the Laplace transform, s is a variable which is complex and independent, f(t) is any function of time which is being transformed, and L is the operator which is defined by an integral.

f(t) is calculated by taking inverse Laplace transform of the function F(s).

PFE is the partial fraction expansion is the method of expanding the denominator of a fraction into simpler terms.

Laplace transform of higher order derivatives is given by:

L(dnfdtn)=snF(s)sn1f(0)sn2f(1)(0)sf(n2)(0)f(n1)(0) …… (2)

Interpretation Introduction

(b)

Interpretation:

It is to be determined if the tank will overflow or not when the height of the tank is 2.5 m.

Concept introduction:

For large value of time, the asymptotic value of y(t) can be calculated using Final Value theorem (FVM) as shown below:

limty(t)=lims0[sY(s)] ........ (3)

This theorem is applicable only if lims0[sY(s)] exists for all values of Re(s)0.

Interpretation Introduction

(c)

Interpretation:

The maximum flow change, umax without the tank being overflowing is to be calculated.

Concept introduction:

For a function f(t), the Laplace transform is given by,

F(s)=L[f(t)]=0f(f)estdt ........ (1)

Here, F(s) represents the Laplace transform, s is a variable which is complex and independent, f(t) is any function of time which is being transformed, and L is the operator which is defined by an integral.

f(t) is calculated by taking inverse Laplace transform of the function F(s).

PFE is the partial fraction expansion is the method of expanding the denominator of a fraction into simpler terms.

For large value of time, the asymptotic value of y(t) can be calculated using Final Value theorem (FVM) as shown below:

limty(t)=lims0[sY(s)] ........ (3)

This theorem is applicable only if lims0[sY(s)] exists for all values of Re(s)0.

Blurred answer
Students have asked these similar questions
A process for the microbial synthesis of 1,3-propanediol ( 3 8 2 C H O ) uses an anaerobicfermenter with a selected strain of K. pneumoniae to convert glycerol ( 3 8 3 C H O ) to 1,3-propanediol and acetic acid ( 2 4 2 C H O ). All other byproducts are of negligible concentration.The fermentation and cell growth equation can be written:3 8 3 3 4 7 2 3 8 2 2 4 2 2 2 68 3 3 49 15 15 40 C H O NH C H O N C H O C H O CO H O + → + + + +The continuous fermentation process is set up at 37°C and atmospheric pressure.Anaerobic conditions are maintained by sparging the fermentation broth with N2 at aflowrate of 500 litres per minute. The medium, containing ammonia, is fed at 500 kg perhour, and has a composition of 14% (w/w) glycerol. Suppression of the side reactions isachieved by excess glycerol, so the liquid product contains 3% (w/w) unreacted glycerol.2a. Draw a process diagram. List all your assumptions necessary to write a materialbalance.(5 marks)2b. List your unknowns.(3 marks)2c. Write…
8-4. A pressurized-water reactor generates 70 Mw(t) in the core. The coolant-moderator mass-flow rate is 107 lbm/hr. It enters the core at 490°F. Estimate the effective thermal- neutron fission cross section in the core.
Q/ 8-17 cylindrical reactor core is 4 ft in diameter and 4.8 ft height. The maximum neutron flux is 1013. The extrapolation length are 0.186 ft in the radial direction and 0.3 ft in the axial direction. The fuel is 20% enriched UO2.0= 500 b. Determine (a) The neutron flux at the upper and lower rims, and (b) the maximum heat generated in the fuel in [MeV/s cm³] and [Btu/hr ft³).
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Introduction to Chemical Engineering Thermodynami...
Chemical Engineering
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:McGraw-Hill Education
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemical Engineering
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Text book image
Elements of Chemical Reaction Engineering (5th Ed...
Chemical Engineering
ISBN:9780133887518
Author:H. Scott Fogler
Publisher:Prentice Hall
Text book image
Process Dynamics and Control, 4e
Chemical Engineering
ISBN:9781119285915
Author:Seborg
Publisher:WILEY
Text book image
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:9781285061238
Author:Lokensgard, Erik
Publisher:Delmar Cengage Learning
Text book image
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:9780072848236
Author:Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:McGraw-Hill Companies, The