Solid Waste Engineering: A Global Perspective, Si Edition
Solid Waste Engineering: A Global Perspective, Si Edition
3rd Edition
ISBN: 9781305638600
Author: William A. Worrell, P. Aarne Vesilind, Christian Ludwig
Publisher: Cengage Learning
bartleby

Concept explainers

Question
Book Icon
Chapter 3, Problem 3.16P
To determine

The objective function and the constraint equations for minimizing the transportation cost for the community.

Expert Solution & Answer
Check Mark

Answer to Problem 3.16P

The objective function for minimizing the transportation cost for the community is [x1A+x2A+x3A+x1C+x2C+x3C].

The constraint equations are i=13xikBk and k=12xik=Wi . Here xik0 for all i and k .

Explanation of Solution

Given:

The community is shown in the figure below:

    Solid Waste Engineering: A Global Perspective, Si Edition, Chapter 3, Problem 3.16P

    Figure (1)

Assume that the cost of disposal is the same at both the disposal sites, and therefore, the disposal cost can be ignored.

Write the expression for the general objective equation for transportation cost.

C=i=1Nk=1K( x ik c ik ) ...... (I)

Here, the transportation cost is C , the number of disposal sites is K , the number of source of refuse is N , the cost per quantity of hauling the waste from source to disposal site is cik , the quantity of the waste hauled from source to disposal site is xik , the number of source of waste hauled is i, and the number of disposal site is k .

In Figure-(1) there are three routes, this means there are three sources and two disposal sites A and B.

Substitute 3 for N and 2 for K in the Equation-(I).

C=i=13k=12( x ik c ik )

From the given data disposal cost can be ignored.

Thus, expand the above equation to find the transportation cost.

C=[x1A+x2A+x3A+x1C+x2C+x3C]

Write the 1st constraint equation from Equation-(I).

The waste hauled is equal to or less than the capacity of the disposal sites.

i=13xikBk ...... (II)

Here, the disposal site is Bk .

Expand Equation (II) to find the 1st constraint equations.

(x 1A+x 2A+x 3A)BA(x 1C+x 2C+x 3C)BC

Write the 2nd constraint equation from Equation-(I).

The waste hauled is equal to the capacity of the disposal sites.

k=12xik=Wi ...... (III)

Here, the disposal site is Wi .

Expand Equation (III) to find the 2nd constraint equations.

(x 1A+x 1C)=WA(x 2A+x 2C)=WC(x 3A+x 3C)=WD

The quantity of the waste hauled out must be positive.

xik0 for all i and k .

Conclusion:

Thus, the objective function for minimizing the transportation cost for the community is [x1A+x2A+x3A+x1C+x2C+x3C] .

The constraint equations are i=13xikBk and k=12xik=Wi . Here xik0 for all i and k .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
2-7 The force P applied at joint D of the square frame causes the frame to sway and form the dashed rhombus. Determine the average normal strain developed in wire AC. Assume the three rods are rigid. I understand how you calculate length LAC its just the sqrt(400^2+400^2) = 565.685mm. I do understand that you have to take LAC'-LAC/LAC to get .0258mm/mm. I'm just not understanding the cosine law used to calculate LAC'. I guess what I'm asking is why do you use cos instead of sin or tangent? I've been trying to understand why that was used for a bit now and it's probably something simple I'm forgetting. If you can, please clarify it in detail. Thank you so much!
Traffic flow on a three-lane (one direction) freeway can be described by the Greenshields model. One lane of the three lanes on a section of this freeway will have to be closed to undertake an emergency bridge repair that is expected to take 2 hours. It is estimated that the capacity at the work zone will be reduced by 30 percent of that of the section just upstream of the work zone. The mean free flow speed of the highway is 70 mi/h and the jam density is 150 veh/mi/In. If it is estimated that the demand flow on the highway during the emergency repairs is 85 percent of the capacity, using the deterministic approach, determine the following. (a) the maximum queue length (in veh) that will be formed veh (b) the total delay (in h) h (c) the number of vehicles that will be affected by the incident veh (d) the average individual delay (in min) min
Non-constant sections are used in bridges without changing the appearance of the bridge significantly. Refer to the figure below. Compute the ratio of moment inertial after to before of the plate girder shown (greater than 1). A 10x0.5" steel plate of the same grade as the plate girder and is fillet welded to the flanges
Knowledge Booster
Background pattern image
Civil Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Fundamentals Of Construction Estimating
Civil Engineering
ISBN:9781337399395
Author:Pratt, David J.
Publisher:Cengage,
Text book image
Solid Waste Engineering
Civil Engineering
ISBN:9781305635203
Author:Worrell, William A.
Publisher:Cengage Learning,
Text book image
Traffic and Highway Engineering
Civil Engineering
ISBN:9781305156241
Author:Garber, Nicholas J.
Publisher:Cengage Learning