3.109 Materials engineers often create new alloys in an effort to improve the properties of an existing material. ZnO based semiconductors show promise in applications like light-emitting diodes, but their performance can be enhanced by the addition of small amounts of cadmium. One material that has been studied can he represented by the formula Zn 0 . 8 4 3 Cd 0 . 1 5 7 O. (These materials are solid solutions, and so they can have variable compositions. The noninteger coefficients do not imply fractional atoms.) Express the composition of this alloy in terms of (a) at%, (b) mol%, and (c) wt%.
3.109 Materials engineers often create new alloys in an effort to improve the properties of an existing material. ZnO based semiconductors show promise in applications like light-emitting diodes, but their performance can be enhanced by the addition of small amounts of cadmium. One material that has been studied can he represented by the formula Zn 0 . 8 4 3 Cd 0 . 1 5 7 O. (These materials are solid solutions, and so they can have variable compositions. The noninteger coefficients do not imply fractional atoms.) Express the composition of this alloy in terms of (a) at%, (b) mol%, and (c) wt%.
Solution Summary: The author explains that the composition of metals must be calculated in various forms.
3.109 Materials engineers often create new alloys in an effort to improve the properties of an existing material. ZnO based semiconductors show promise in applications like light-emitting diodes, but their performance can be enhanced by the addition of small amounts of cadmium. One material that has been studied can he represented by the formula Zn0.843Cd0.157O. (These materials are solid solutions, and so they can have variable compositions. The noninteger coefficients do not imply fractional atoms.) Express the composition of this alloy in terms of (a) at%, (b) mol%, and (c) wt%.
Use the expression below to
⚫ calculate its value and report it to the proper number of significant digits (you may need to
round your answer).
⚫ calculate the % error (or % relative error or % inherent error)
⚫ calculate the absolute error.
(20.54±0.02 × 0.254±0.003) / (3.21±0.05) =
Value:
% Error:
Absolute error: ± |
% (only 1 significant digit)
(only 1 significant digit)
In each case (more ductile, more brittle, more tough or resistant), indicate which parameter has a larger value.
parameter Elastic limit Tensile strength
more ductile
Strain at break Strength Elastic modulus
more fragile
more tough or resistant
None
Chapter 3 Solutions
Bundle: Chemistry for Engineering Students, Loose-Leaf Version, 4th + OWLv2 with MindTap Reader with Student Solutions Manual, 1 term (6 months) Printed Access Card
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Step by Step Stoichiometry Practice Problems | How to Pass ChemistryMole Conversions Made Easy: How to Convert Between Grams and Moles; Author: Ketzbook;https://www.youtube.com/watch?v=b2raanVWU6c;License: Standard YouTube License, CC-BY