Chemistry: The Molecular Nature of Matter and Change
Chemistry: The Molecular Nature of Matter and Change
9th Edition
ISBN: 9781260477467
Author: Martin Silberberg
Publisher: Mcgraw-hill Higher Education (us)
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 3, Problem 3.109P

(a)

Interpretation Introduction

Interpretation:

A balanced chemical equation for a reaction between hydrogen sulphide and oxygen to form sulphur dioxide and water vapour is to be written.

Concept introduction:

A balanced chemical equation obeys the law of conservation of mass since the total mass of reactants and products are equal in a balanced chemical equation.

Following are the steps to write a balanced chemical equation.

Step 1: Translate the chemical statement into a skeleton equation. The reactants are the chemical substances that undergo a change, thus, write the reactants on the left side of the yield arrow. The products are the chemical substances that are produced during the chemical change, thus, write the products on the right side of the yield arrow. Put a blank before each formula while beginning the balancing process.

Step 2: Identify the most complex substance and choose an element such that the element must be present only in one reactant and one product. Place the stoichiometric coefficient before the element/elements such that the number of atoms of that element(s) is the same on both sides.

Step 3: Balance the remaining atoms by placing the stoichiometric coefficients before the element/elements such that the number of atoms of that element(s) is the same on both sides. Identify the least complex substance and end with it.

Step 4: In a balanced chemical reaction, the smallest whole number coefficients are most preferred. Hence, adjust the coefficients in such a way that the smallest whole number coefficients are obtained for each element.

Step 5: Check whether the chemical equation is balanced or not by counting the number of atoms of each element on both sides.

Step 6: Specify the states of matter of each chemical substance present in the balanced chemical equation.

(b)

Interpretation Introduction

Interpretation:

A balanced chemical equation for a reaction when potassium chlorate is heated forming potassium chloride and potassium perchlorate is to be written.

Concept introduction:

A balanced chemical equation obeys the law of conservation of mass since the total mass of reactants and products are equal in a balanced chemical equation.

Following are the steps to write a balanced chemical equation.

Step 1: Translate the chemical statement into a skeleton equation. The reactants are the chemical substances that undergo a change, thus, write the reactants on the left side of the yield arrow. The products are the chemical substances that are produced during the chemical change, thus, write the products on the right side of the yield arrow. Put a blank before each formula while beginning the balancing process.

Step 2: Identify the most complex substance and choose an element such that the element must be present only in one reactant and one product. Place the stoichiometric coefficient before the element/elements such that the number of atoms of that element(s) is the same on both sides.

Step 3: Balance the remaining atoms by placing the stoichiometric coefficients before the element/elements such that the number of atoms of that element(s) is the same on both sides. Identify the least complex substance and end with it.

Step 4: In a balanced chemical reaction, the smallest whole number coefficients are most preferred. Hence, adjust the coefficients in such a way that the smallest whole number coefficients are obtained for each element.

Step 5: Check whether the chemical equation is balanced or not by counting the number of atoms of each element on both sides.

Step 6: Specify the states of matter of each chemical substance present in the balanced chemical equation.

(c)

Interpretation Introduction

Interpretation:

A balanced chemical equation for a reaction between hydrogen gas and iron(III)oxide to form iron metal and water vapor is to be written.

Concept introduction:

A balanced chemical equation obeys the law of conservation of mass since the total mass of reactants and products are equal in a balanced chemical equation.

Following are the steps to write a balanced chemical equation.

Step 1: Translate the chemical statement into a skeleton equation. The reactants are the chemical substances that undergo a change, thus, write the reactants on the left side of the yield arrow. The products are the chemical substances that are produced during the chemical change, thus, write the products on the right side of the yield arrow. Put a blank before each formula while beginning the balancing process.

Step 2: Identify the most complex substance and choose an element such that the element must be present only in one reactant and one product. Place the stoichiometric coefficient before the element/elements such that the number of atoms of that element(s) is the same on both sides.

Step 3: Balance the remaining atoms by placing the stoichiometric coefficients before the element/elements such that the number of atoms of that element(s) is the same on both sides. Identify the least complex substance and end with it.

Step 4: In a balanced chemical reaction, the smallest whole number coefficients are most preferred. Hence, adjust the coefficients in such a way that the smallest whole number coefficients are obtained for each element.

Step 5: Check whether the chemical equation is balanced or not by counting the number of atoms of each element on both sides.

Step 6: Specify the states of matter of each chemical substance present in the balanced chemical equation.

(d)

Interpretation Introduction

Interpretation:

The chemical equation for the combustion reaction of gaseous ethane to form carbon dioxide and water vapor is to be balanced.

Concept introduction:

A balanced chemical equation obeys the law of conservation of mass since the total

mass of reactants and products are equal in a balanced chemical equation.

Following are the steps to write a balanced chemical equation.

Step 1: Translate the chemical statement into a skeleton equation. The reactants are the chemical substances that undergo a change, thus, write the reactants on the left side of the yield arrow. The products are the chemical substances that are produced during the chemical change, thus, write the products on the right side of the yield arrow. Put a blank before each formula while beginning the balancing process.

Step 2: Identify the most complex substance and choose an element such that the element must be present only in one reactant and one product. Place the stoichiometric coefficient before the element/elements such that the number of atoms of that element(s) is the same on both sides.

Step 3: Balance the remaining atoms by placing the stoichiometric coefficients before the element/elements such that the number of atoms of that element(s) is the same on both sides. Identify the least complex substance and end with it.

Step 4: In a balanced chemical reaction, the smallest whole number coefficients are most preferred. Hence, adjust the coefficients in such a way that the smallest whole number coefficients are obtained for each element.

Step 5: Check whether the chemical equation is balanced or not by counting the number of atoms of each element on both sides.

Step 6: Specify the states of matter of each chemical substance present in the balanced chemical equation.

(e)

Interpretation Introduction

Interpretation:

The chemical equation for the reaction when iron(II)chloride is treated with chlorine trifluoride gas to form iron(III)fluoride is to be balanced.

Concept introduction:

A balanced chemical equation obeys the law of conservation of mass since the total

mass of reactants and products are equal in a balanced chemical equation.

Following are the steps to write a balanced chemical equation.

Step 1: Translate the chemical statement into a skeleton equation. The reactants are the chemical substances that undergo a change, thus, write the reactants on the left side of the yield arrow. The products are the chemical substances that are produced during the chemical change, thus, write the products on the right side of the yield arrow. Put a blank before each formula while beginning the balancing process.

Step 2: Identify the most complex substance and choose an element such that the element must be present only in one reactant and one product. Place the stoichiometric coefficient before the element/elements such that the number of atoms of that element(s) is the same on both sides.

Step 3: Balance the remaining atoms by placing the stoichiometric coefficients before the element/elements such that the number of atoms of that element(s) is the same on both sides. Identify the least complex substance and end with it.

Step 4: In a balanced chemical reaction, the smallest whole number coefficients are most preferred. Hence, adjust the coefficients in such a way that the smallest whole number coefficients are obtained for each element.

Step 5: Check whether the chemical equation is balanced or not by counting the number of atoms of each element on both sides.

Step 6: Specify the states of matter of each chemical substance present in the balanced chemical equation.

Blurred answer
Students have asked these similar questions
Show work. Don't give Ai generated solution
In the video, we looked at the absorbance of a certain substance and how it varies depending on what wavelength of light we are looking at. Below is a similar scan of a different substance. What color BEST describes how this substance will appear? Absorbance (AU) Violet Blue Green Orange 1.2 1.0- 0.8- 0.6- 0.4- 0.2 0.0 450 500 550 600 650 700 Wavelength (nm) violet indigo blue green yellow orange red Red O Cannot tell from this information In the above graph, what causes -450 nm wavelength of light to have a higher absorbance than light with a -550 nm wavelength? Check all that are true. The distance the light travels is different The different data points are for different substances The concentration is different at different times in the experiment Epsilon (molar absortivity) is different at different wavelengths
5. a. Data were collected for Trial 1 to determine the molar mass of a nonvolatile solid solute when dissolved in cyclo- hexane. Complete the table for the analysis (See Report Sheet). Record calculated values with the correct number of significant figures. B. Freezing Point of Cyclohexane plus Calculation Zone Unknown Solute 2. Mass of cyclohexane (g) 10.14 Part C.4 3. Mass of added solute (g) 0.255 C. Calculations 1. k; for cyclohexane (°C⚫ kg/mol) 20.0 2. Freezing point change, AT, (°C) 3.04 Part C.6 3. Mass of cyclohexane in solution (kg) 4. Moles of solute, total (mol) Show calculation. 5. Mass of solute in solution, total (g) 6. Molar mass of solute (g/mol) Show calculation.

Chapter 3 Solutions

Chemistry: The Molecular Nature of Matter and Change

Ch. 3.1 - Use the information in Follow-up Problem 3.6A to...Ch. 3.1 - Prob. 3.6BFPCh. 3.2 - Prob. 3.7AFPCh. 3.2 - Prob. 3.7BFPCh. 3.2 - Prob. 3.8AFPCh. 3.2 - Prob. 3.8BFPCh. 3.2 - Prob. 3.9AFPCh. 3.2 - Prob. 3.9BFPCh. 3.3 - Prob. 3.10AFPCh. 3.3 - Prob. 3.10BFPCh. 3.3 - Prob. 3.11AFPCh. 3.3 - Prob. 3.11BFPCh. 3.4 - Prob. 3.12AFPCh. 3.4 - Prob. 3.12BFPCh. 3.4 - Prob. 3.13AFPCh. 3.4 - Prob. 3.13BFPCh. 3.4 - Prob. 3.14AFPCh. 3.4 - Prob. 3.14BFPCh. 3.4 - Prob. 3.15AFPCh. 3.4 - Prob. 3.15BFPCh. 3.4 - Prob. 3.16AFPCh. 3.4 - Prob. 3.16BFPCh. 3.4 - Prob. 3.17AFPCh. 3.4 - Prob. 3.17BFPCh. 3.4 - Prob. 3.18AFPCh. 3.4 - Prob. 3.18BFPCh. 3 - Prob. 3.1PCh. 3 - Prob. 3.2PCh. 3 - Why might the expression “1 mol of chlorine” be...Ch. 3 - Prob. 3.4PCh. 3 - Prob. 3.5PCh. 3 - Prob. 3.6PCh. 3 - Prob. 3.7PCh. 3 - Prob. 3.8PCh. 3 - Calculate the molar mass of each of the...Ch. 3 - Prob. 3.10PCh. 3 - Prob. 3.11PCh. 3 - Calculate each of the following quantities: Mass...Ch. 3 - Calculate each of the following quantities: Amount...Ch. 3 - Prob. 3.14PCh. 3 - Prob. 3.15PCh. 3 - Prob. 3.16PCh. 3 - Prob. 3.17PCh. 3 - Prob. 3.18PCh. 3 - Prob. 3.19PCh. 3 - Calculate each of the following: Mass % of H in...Ch. 3 - Calculate each of the following: Mass % of I in...Ch. 3 - Calculate each of the following: Mass fraction of...Ch. 3 - Calculate each of the following: Mass fraction of...Ch. 3 - Oxygen is required for the metabolic combustion of...Ch. 3 - Cisplatin (right), or Platinol, is used in the...Ch. 3 - Allyl sulfide (below) gives garlic its...Ch. 3 - Iron reacts slowly with oxygen and water to form a...Ch. 3 - Prob. 3.28PCh. 3 - Prob. 3.29PCh. 3 - The mineral galena is composed of lead(II) sulfide...Ch. 3 - Prob. 3.31PCh. 3 - Prob. 3.32PCh. 3 - List three ways compositional data may be given in...Ch. 3 - Prob. 3.34PCh. 3 - Prob. 3.35PCh. 3 - Prob. 3.36PCh. 3 - Prob. 3.37PCh. 3 - Prob. 3.38PCh. 3 - Prob. 3.39PCh. 3 - What is the molecular formula of each...Ch. 3 - Prob. 3.41PCh. 3 - Prob. 3.42PCh. 3 - Find the empirical formula of each of the...Ch. 3 - An oxide of nitrogen contains 30.45 mass % N. (a)...Ch. 3 - Prob. 3.45PCh. 3 - A sample of 0.600 mol of a metal M reacts...Ch. 3 - Prob. 3.47PCh. 3 - Prob. 3.48PCh. 3 - Prob. 3.49PCh. 3 - Prob. 3.50PCh. 3 - Prob. 3.51PCh. 3 - Prob. 3.52PCh. 3 - Prob. 3.53PCh. 3 - Prob. 3.54PCh. 3 - Prob. 3.55PCh. 3 - Prob. 3.56PCh. 3 - Prob. 3.57PCh. 3 - Prob. 3.58PCh. 3 - Prob. 3.59PCh. 3 - Prob. 3.60PCh. 3 - Prob. 3.61PCh. 3 - Prob. 3.62PCh. 3 - Prob. 3.63PCh. 3 - Prob. 3.64PCh. 3 - Prob. 3.65PCh. 3 - Prob. 3.66PCh. 3 - Prob. 3.67PCh. 3 - Prob. 3.68PCh. 3 - Prob. 3.69PCh. 3 - Prob. 3.70PCh. 3 - Prob. 3.71PCh. 3 - Prob. 3.72PCh. 3 - Prob. 3.73PCh. 3 - Prob. 3.74PCh. 3 - Elemental phosphorus occurs as tetratomic...Ch. 3 - Prob. 3.76PCh. 3 - Solid iodine trichloride is prepared in two steps:...Ch. 3 - Prob. 3.78PCh. 3 - Prob. 3.79PCh. 3 - Prob. 3.80PCh. 3 - Prob. 3.81PCh. 3 - Prob. 3.82PCh. 3 - Prob. 3.83PCh. 3 - Prob. 3.84PCh. 3 - Prob. 3.85PCh. 3 - Prob. 3.86PCh. 3 - Prob. 3.87PCh. 3 - Prob. 3.88PCh. 3 - Prob. 3.89PCh. 3 - Prob. 3.90PCh. 3 - Prob. 3.91PCh. 3 - Prob. 3.92PCh. 3 - Prob. 3.93PCh. 3 - Prob. 3.94PCh. 3 - When 20.5 g of methane and 45.0 g of chlorine gas...Ch. 3 - Prob. 3.96PCh. 3 - Prob. 3.97PCh. 3 - Prob. 3.98PCh. 3 - Prob. 3.99PCh. 3 - Prob. 3.100PCh. 3 - Sodium borohydride (NaBH4) is used industrially in...Ch. 3 - Prob. 3.102PCh. 3 - The first sulfur-nitrogen compound was prepared in...Ch. 3 - Prob. 3.104PCh. 3 - Prob. 3.105PCh. 3 - Prob. 3.106PCh. 3 - Serotonin () transmits nerve impulses between...Ch. 3 - In 1961, scientists agreed that the atomic mass...Ch. 3 - Prob. 3.109PCh. 3 - Isobutylene is a hydrocarbon used in the...Ch. 3 - The multistep smelting of ferric oxide to form...Ch. 3 - Prob. 3.112PCh. 3 - Prob. 3.113PCh. 3 - Prob. 3.114PCh. 3 - Prob. 3.115PCh. 3 - Prob. 3.116PCh. 3 - Prob. 3.117PCh. 3 - Prob. 3.118PCh. 3 - Prob. 3.119PCh. 3 - Prob. 3.120PCh. 3 - For the reaction between solid tetraphosphorus...Ch. 3 - Prob. 3.122PCh. 3 - Prob. 3.123PCh. 3 - Prob. 3.124PCh. 3 - Prob. 3.125PCh. 3 - Prob. 3.126PCh. 3 - Prob. 3.127PCh. 3 - Prob. 3.128PCh. 3 - Ferrocene, synthesized in 1951, was the first...Ch. 3 - Prob. 3.130PCh. 3 - Prob. 3.131PCh. 3 - Citric acid (below) is concentrated in citrus...Ch. 3 - Prob. 3.133PCh. 3 - Nitrogen monoxide reacts with elemental oxygen to...Ch. 3 - Prob. 3.135PCh. 3 - Prob. 3.136PCh. 3 - Manganese is a key component of extremely hard...Ch. 3 - The human body excretes nitrogen in the form of...Ch. 3 - Aspirin (acetylsalicylic acid, C9H8O4) is made by...Ch. 3 - Prob. 3.140PCh. 3 - Prob. 3.141PCh. 3 - Prob. 3.142PCh. 3 - When powdered zinc is heated with sulfur, a...Ch. 3 - Cocaine (C17H21O4N) is a natural substance found...Ch. 3 - Prob. 3.145P
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Types of Matter: Elements, Compounds and Mixtures; Author: Professor Dave Explains;https://www.youtube.com/watch?v=dggHWvFJ8Xs;License: Standard YouTube License, CC-BY