EBK THE ANALYSIS AND DESIGN OF LINEAR C
EBK THE ANALYSIS AND DESIGN OF LINEAR C
8th Edition
ISBN: 9781119140320
Author: Toussaint
Publisher: VST
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 3, Problem 3.106IP
To determine

The relation of the output voltage across load resistor in terms of the given parameters for the given non-inverting summer.

Blurred answer
Students have asked these similar questions
3. Describe the function of PLL circuit. 4. Describe the function of bandpass filter. ASK Modulator/Demodulator U1 VD Signal in VT out X1 W R1 VC Carrier in w x2 100K 3 Y1 4 Y2 AD633 Z VR1 10K VR1 Multiplier(1) I U2 Vx out X1 W R3 2 w x2 In2 100K 3 ۲۱ I Y2 AD633 Z VR2 R2 10K C4 100K VR2 Multiplier(2) +5V 200p R5 R6 R101K ww w 2.7K 22K 1N4148 D1 559 VE out D+ In(ac) 6 0H 200p HH 6 VLP out Vo out U3 VR 0.01 0.1u R8 VR3 ww 50K Envelope Detector 10K U3 LF356 VR3 LPF U4Σ LM311 Comparator U5 PLL in CS HH 14 SIGN IN 0.1u 6 CIA PC1OUT 2 PULSES PHASE(2) COMPARATOR OUT 13. C10 HT 150p R16 ww R12 VSO C6 200p VCO OUT 4 IK in R14 C9 18K 10 O w 7 Cle H VLO out 6 15K VCO 150p 06 11 R1 CD4046 VCO IN 9 VR5 1K 12 R2 0.0047u C7 I Demod C8 out 10 SOURCE FOLLOWER R11 100K INH COMP IN 5 3 VR4 +5V+12V GND-12V о HTO 0.1u R13 10K I PL VR5 Figure 18-10 KL-94005 module R15 U6Σ OP37 BPF
DUC 1. Is the waveform on VT out terminal an ASK modulated signal? TS PROD 2. Is the waveform on VT out terminal an OOK modulated signal? ASK Modulator/Demodulator U1 VD Signal in VT out X1 W R1 VC Carrier in w x2 100K 3 Y1 4 Y2 AD633 Z VR1 10K VR1 Multiplier(1) I U2 Vx out X1 W R3 2 w x2 In2 100K 3 ۲۱ I Y2 AD633 Z VR2 R2 10K C4 100K VR2 Multiplier(2) +5V 200p R5 R6 R101K ww w 2.7K 22K 1N4148 D1 559 VE out D+ In(ac) 6 0H 200p HH 6 VLP out Vo out U3 VR 0.01 0.1u R8 VR3 ww 50K Envelope Detector 10K U3 LF356 VR3 LPF U4Σ LM311 Comparator U5 PLL in CS HH 14 SIGN IN PC1OUT 2 0.1u 6 CIA PULSES PHASE(2) COMPARATOR OUT 13 C10 HT 150p R16 ww R12 VSO 18K C6 200p VCO OUT 4 IK in R14 C9 10 O w H VLO out 6 7 Cle 15K VCO 150p 06 11 R1 CD4046 VCO IN 9 VR5 1K 12 R2 0.0047u C7 I Demod C8 out 10 SOURCE FOLLOWER R11 100K INH COMP IN 5 3 VR4 +5V+12V GND-12V о HTO 0.1u R13 10K I PL Figure 18-10 KL-94005 module VR5 R15 U6Σ OP37 BPF
h e 6. Discuss the relationship between Vx out and VLP out signals. 7. Describe the function of comparator. ASK Modulator/Demodulator U1 VD Signal in VT out X1 W R1 VC Carrier in w x2 100K 3 Y1 4 Y2 AD633 Z VR1 10K VR1 Multiplier(1) I U2 Vx out X1 W R3 2 w x2 In2 100K 3 ۲۱ I Y2 AD633 Z VR2 R2 10K C4 100K VR2 Multiplier(2) +5V 200p R5 R6 R101K ww w 2.7K 22K 1N4148 D1 559 VE out D+ In(ac) 6 0H 200p HH 6 VLP out Vo out U3 VR 0.01 0.1u R8 VR3 ww 50K Envelope Detector 10K U3 LF356 VR3 LPF U4Σ LM311 Comparator U5 PLL in CS HH 14 SIGN IN 0.1u 6 CIA PC1OUT 2 PULSES PHASE(2) COMPARATOR OUT 13. C10 HT 150p R16 ww R12 VSO C6 200p VCO OUT 4 IK in R14 C9 18K 10 O w 7 Cle H VLO out 6 15K VCO 150p 06 11 R1 CD4046 VCO IN 9 VR5 1K 12 R2 0.0047u C7 I Demod C8 out 10 SOURCE FOLLOWER R11 100K INH COMP IN 5 3 VR4 +5V+12V GND-12V о HTO 0.1u R13 10K I PL VR5 Figure 18-10 KL-94005 module R15 U6Σ OP37 BPF

Chapter 3 Solutions

EBK THE ANALYSIS AND DESIGN OF LINEAR C

Ch. 3 - (a) Formulate mesh-current equations for the...Ch. 3 - (a) Formulate mesh-current equations for the...Ch. 3 - (a) Formulate mesh-current equations for the...Ch. 3 - Prob. 3.16PCh. 3 - Formulate mesh-current equations for the circuit...Ch. 3 - For the circuit of figure P3-19 solve for iA,iB,...Ch. 3 - Formulate mesh-current equations for the circuit...Ch. 3 - The circuit in Figure P3-21 seems to require two...Ch. 3 - Formulate mesh-current equations for the circuit...Ch. 3 - Use simple engineering intuition to find the input...Ch. 3 - In Figure P3-24 all of the resistors are 1k and...Ch. 3 - Use Figure P3-24 and MATLAB to solve the following...Ch. 3 - Formulate mesh-current equations for the circuit...Ch. 3 - Find vO for the block diagram shown in figure...Ch. 3 - Design a voltage-divider circuit that will realize...Ch. 3 - Design a current-divider circuit that will realize...Ch. 3 - Using a single resistor, design a circuit that...Ch. 3 - Find the proportionality constant K=vO/vS for the...Ch. 3 - Find the proportionality constant K=iO/vS for the...Ch. 3 - Find the proportionality constant K=vO/iS for the...Ch. 3 - Find the proportionality constant K=iO/iS for the...Ch. 3 - Find the proportionality constant K=vO/vS for the...Ch. 3 - Use the unit output method to find K and vO in...Ch. 3 - Use the unit output method to find K and vO in...Ch. 3 - Use the unit output method to find K in Figure...Ch. 3 - Use the superposition principle to find vO in...Ch. 3 - Use the superposition principle to find vO in...Ch. 3 - Use the superposition principle to find vO in...Ch. 3 - (a) Use the superposition principle to find vO in...Ch. 3 - A linear circuit containing two sources drives a...Ch. 3 - A block diagram of a linear circuit is shown in...Ch. 3 - A certain linear circuit has four input voltages...Ch. 3 - When the current source is turned off in the...Ch. 3 - For the circuit in Figure P3—51, find the Thévenin...Ch. 3 - For the circuit in Figure P3—52, find the Thévenin...Ch. 3 - For the circuit of Figure P3—53, find the Thévenin...Ch. 3 - Find the Thévenin or Norton equivalent circuit...Ch. 3 - Find the Thévenin or Norton equivalent circuit...Ch. 3 - Find the Thévenin equivalent circuit seen by RL in...Ch. 3 - Find the Norton equivalent seen by RL in Figure...Ch. 3 - You need to determine the Thévenin equivalent...Ch. 3 - Find the Thévenin equivalent seen by RL in figure...Ch. 3 - The purpose of this problem is to use Thévenin...Ch. 3 - The circuit in Figure P3-62 was solved earlier...Ch. 3 - Assume that Figure P3-63 represents a model of the...Ch. 3 - The iv characteristic of the active circuit...Ch. 3 - You have successfully completed the first course...Ch. 3 - The Thévenin equivalent parameters of a practical...Ch. 3 - Use a sequence of source transformations to find...Ch. 3 - The circuit in Figure P3-68 provides power to a...Ch. 3 - A nonlinear resistor is connected across a...Ch. 3 - Prob. 3.71PCh. 3 - Find the Norton equivalent seen by RL in Figure...Ch. 3 - Find the Thévenin equivalent seen by RL in Figure...Ch. 3 - Find the Thévenin equivalent seen by RL in Figure...Ch. 3 - For the circuit of Figure P3-75, find the value of...Ch. 3 - For the circuit of Figure P3-76, find the value of...Ch. 3 - The resistance R in Figure P3-77 is adjusted until...Ch. 3 - When a 5-k resistor is connected across a...Ch. 3 - Find the value of R in the circuit of Figure P3-79...Ch. 3 - For the circuit of Figure P3-80, find the value of...Ch. 3 - A 1-k load needs 10 mA to operate correctly....Ch. 3 - A practical source delivers 25 mA to a load. The...Ch. 3 - A 10-V source is shown in Figure P3-83 that is...Ch. 3 - (a)Select RL and design an interface circuit for...Ch. 3 - The source in Figure P3-85 has a 100-mA output...Ch. 3 - Figure P3-86 shows an interface circuit connecting...Ch. 3 - Prob. 3.87PCh. 3 - In this problem, you will design two interface...Ch. 3 - Two teams are competing to design the interface...Ch. 3 - The bridge-T attenuation pad shown in FigureP3-90...Ch. 3 - Design two interface circuits in Figure P3-91 so...Ch. 3 - Design the interface circuit in Figure P3-91 so...Ch. 3 - Design the interface circuit in Figure P3-93 so...Ch. 3 - It is claimed that both interface circuits in...Ch. 3 - Audio Speaker Resistance-Matching Network A...Ch. 3 - Interface Circuit Design Using no more than three...Ch. 3 - Battery Design A satellite requires a battery with...Ch. 3 - Design Interface Competition The output of a...Ch. 3 - Prob. 3.106IP
Knowledge Booster
Background pattern image
Electrical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Text book image
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Text book image
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Text book image
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Text book image
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Text book image
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,
Thevenin's Theorem; Author: Neso Academy;https://www.youtube.com/watch?v=veAFVTIpKyM;License: Standard YouTube License, CC-BY