21ST CENT.AST.W/WKBK+SMARTWORK >BI<
6th Edition
ISBN: 9780393415216
Author: Kay
Publisher: NORTON
expand_more
expand_more
format_list_bulleted
Question
Chapter 3, Problem 26QP
To determine
Which Newton’s law describes the reason of a person going forward even if the car stopped.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A certain car (Mazda Miata) has a mass of 1080 kg and can go from zero to 26.8 m/s (0 to 60 mph)in 7.9 seconds. What magnitude of net force must act on the car to cause this?
A 80 kg woman on roller skates pushes a 30 kg girl, also on roller skates, with a force of 100 N. The
magnitude of the force exerted by the girl on the woman is
O 200 N
O 100 N
O 50 N
O 40 N
O 38 N
zero
A 1,000 kg car traveling along the highway at 30 m/s slows to 10 m/s in 5.0 s. The magnitude
of the average force acting on the car during this time is about * 5
O 1 kN
O 2 kN
O 3 kN
O 4 kN
O 5 kN
Chapter 3 Solutions
21ST CENT.AST.W/WKBK+SMARTWORK >BI<
Ch. 3.1 - Prob. 3.1ACYUCh. 3.1 - Prob. 3.1BCYUCh. 3.2 - Prob. 3.2CYUCh. 3.3 - Prob. 3.3CYUCh. 3.4 - Prob. 3.4CYUCh. 3 - Prob. 1QPCh. 3 - Prob. 2QPCh. 3 - Prob. 3QPCh. 3 - Prob. 4QPCh. 3 - Prob. 5QP
Ch. 3 - Prob. 6QPCh. 3 - Prob. 7QPCh. 3 - Prob. 8QPCh. 3 - Prob. 9QPCh. 3 - Prob. 10QPCh. 3 - Prob. 11QPCh. 3 - Prob. 12QPCh. 3 - Prob. 13QPCh. 3 - Prob. 14QPCh. 3 - Prob. 15QPCh. 3 - Prob. 16QPCh. 3 - Prob. 17QPCh. 3 - Prob. 18QPCh. 3 - Prob. 19QPCh. 3 - Prob. 20QPCh. 3 - Prob. 21QPCh. 3 - Prob. 22QPCh. 3 - Prob. 23QPCh. 3 - Prob. 24QPCh. 3 - Prob. 25QPCh. 3 - Prob. 26QPCh. 3 - Prob. 27QPCh. 3 - Prob. 28QPCh. 3 - Prob. 29QPCh. 3 - Prob. 30QPCh. 3 - Prob. 31QPCh. 3 - Prob. 32QPCh. 3 - Prob. 33QPCh. 3 - Prob. 34QPCh. 3 - Prob. 35QPCh. 3 - Prob. 36QPCh. 3 - Prob. 37QPCh. 3 - Prob. 38QPCh. 3 - Prob. 39QPCh. 3 - Prob. 40QPCh. 3 - Prob. 41QPCh. 3 - Prob. 42QPCh. 3 - Prob. 43QPCh. 3 - Prob. 44QPCh. 3 - Prob. 45QP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The starship Enterprise has its tractor beam locked onto some valuable debris and is trying to pull it toward the ship. A Klingon battle cruiser and a Romulan warbird are also trying to recover the item by pulling the debris with their tractor beams as shown in Figure P5.25. a. Given the following magnitudes of the tractor beam forces, find the net force experienced by the debris: FEnt = 7.59 106 N, FRom = 2.53 106 N, and FKling = 8.97 105 N. b. If the debris has a mass of 2549 kg, what is the net acceleration of the debris? FIGURE P5.25arrow_forwardA ball is falling toward the ground. Which of the following statements are false? (a) The force that the ball exerts on Earth is equal in magnitude to the force that Earth exerts on the ball, (b) The ball undergoes the same acceleration as Earth. (c) The magnitude of the force the Earth exerts on the ball is greater than the magnitude of the force the ball exerts on the Earth.arrow_forwardYou push an object, initially at rest, across a frictionless floor with a constant force for a time interval t, resulting in a final speed of v for the object. You then repeat the experiment, but with a force that is twice as large. What time interval is now required to reach the same final speed v? (a) 4 t (b) 2 t (c) t (d) t/2 (e) t/4arrow_forward
- A person catches a ball with a mass of 145 g dropped from a height of 60.0 m above his glove. His hand stops the ball in 0.0100 s. What is the force exerted by his glove on the ball? Assume the ball slows down with constant acceleration.arrow_forwardA car is moving along a frictionless surface with a speed of 2 m/s to the left. You and your friend each come over and push the car at the same time. You exert a force of 6 N to the left, while your friend exerts a force of 6 N to the right. According to Newton’s first law, how will this action affect the car’s motion? The car will speed up because your force is in the same direction of the car’s motion, making it speed up. The car will stop immediately because two balanced forces will cause an object to stop moving. The car will continue to move 2 m/s to the left because there are balanced forces acting on it. The car will continue moving to the left but at a slower speed because your friend’s force is going to make the car slow down.arrow_forwardAn electron is a subatomic particle (m accelerates from an initial velocity of +7.54 x 105 m/s to a final velocity of 2.22 x 106 m/s while traveling a distance of 0.0692 m. = 9.11 x 1031 kg) that is subject to electric forces. An electron moving in the +x direction The electron's acceleration is due to two electric forces parallel to the axis: F1 9.04 x 10-17 N, and F2, which points in the -x direction. Find the magnitudes of (a) the net force acting on the electron and (b) the electric force F2 F, F2 F, on with available attempts. (a) Number Units (b) Number Unitsarrow_forward
- Jimmy's heart accelerates 2.4 x 102kg of blood from 0.15 m/s to 0.32 m/s over an elapsed time of 0.12s every time he sees Janine. Find the magnitude of the acceleration of the blood and use that value to calculate the net force needed to cause that acceleration.arrow_forwardA flea jumps by exerting a force of 1.32 × 10-5 N straight down on the ground. A breeze blowing on the flea parallel to the ground exerts a force of 1.20 x 10-6 N on the flea. Find the direction and magnitude (in m/s2) of the acceleration of the flea if its mass is 6.0 x 10-7 wind points to the right. We will consider this to be the +x direction and vertical to be the ty kg. (Let us assume that F direction.) magnitude direction m/s² ° (measured clockwise from the vertical)arrow_forwardA 821-kg car starts from rest on a horizontal roadway and accelerates eastward for 5.00 s when it reaches a speed of 30.0 m/s. What is the average force exerted on the car during this time?arrow_forward
- A 68.5 kg person is standing inside an elevator. The elevator is going from the 1st floor to the 9th floor. As the elevator approaches the 9th floor there is a moment when the elevator’s speed is 2.90 m/s and is slowing at a rate of 0.904 m/s2. What is the net force acting on the person at this moment?arrow_forwardAn object has a velocity (3.5 m/s)i + (-4.76 m/s)j + (4.68 m/s)k. In a time of 3.21 s its velocity becomes (-3.79 m/s)i + (0.00 m/s)j + (4.68 m/s)k. If the mass of the object is 6.4 kg, what is the magnitude of the net force on the object, in N, during the 3.21 s? Assume the acceleration is constant.arrow_forwardA crate with mass 8.1 kg initially at rest on a warehouse floor is acted on by a net horizontal force of 9.2 newtons. How far does the crate travel in 8.4 seconds?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Drawing Free-Body Diagrams With Examples; Author: The Physics Classroom;https://www.youtube.com/watch?v=3rZR7FSSidc;License: Standard Youtube License