Elements Of Electromagnetics
Elements Of Electromagnetics
7th Edition
ISBN: 9780190698614
Author: Sadiku, Matthew N. O.
Publisher: Oxford University Press
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 3, Problem 26P

(a)

To determine

To prove the expression: (UV)=UV+VU.

(a)

Expert Solution
Check Mark

Explanation of Solution

Given:

The two scalar functions U and V.

Calculation:

The gradient of the function (UV) is (UV).

Calculate the gradient of the function (UV) using the relation.

  (UV)=(UV)xax+(UV)yay+(UV)zaz

  (UV)=U(V)xax+V(U)xax+U(V)yay+V(U)yay+U(V)zaz+V(U)zaz(UV)=U(V)xax+U(V)yay+U(V)zaz+V(U)xax+V(U)yay+V(U)zaz(UV)=U((V)xax+(V)yay+(V)zaz)+V((U)xax+(U)yay+(U)zaz)(UV)=U(V)+V(U)

The expression: (UV)=U(V)+V(U) is proved.

(b)

To determine

To verify the part (a) assuming V=5x2y+2yz and U=3xyz.

(b)

Expert Solution
Check Mark

Explanation of Solution

Given:

The function V is 5x2y+2yz.

The function U is 3xyz.

Calculation:

Calculate the function (UV) using the relation.

  UV=(3xyz)(5x2y+2yz)UV=15x3y2z+6xy2z2

Calculate the gradient of the function ((UV)) using the relation.

  (UV)=(15x3y2z+6xy2z2)xax+(15x3y2z+6xy2z2)yay+(15x3y2z+6xy2z2)zaz(UV)=(45x2y2z+6y2z2)ax+(30x3yz+12xyz2)ay+(15x3y2+12xy2z)az

Calculate the gradient of the function U ((U)) using the relation.

  (U)=(U)xax+(U)yay+(U)zaz

  (U)=(3xyz)xax+(3xyz)yay+(3xyz)zaz(U)=(3yz)ax+(3xz)ay+(3xy)az

Calculate the gradient of the function V ((V)) using the relation.

  (V)=(V)xax+(V)yay+(V)zaz

  (V)=(5x2y+2yz)xax+(5x2y+2yz)yay+(5x2y+2yz)zaz(V)=(10xy)ax+(5x2+2z)ay+(2y)az

Calculate the sum (U(V)+V(U)) using the relation.

  U(V)+V(U)=(3xyz)[(10xy)ax+(5x2+2z)ay+(2y)az]+(5x2y+2yz)[(3yz)ax+(3xz)ay+(3xy)az]U(V)+V(U)=[(30x2y2z)ax+(15x3yz+6xyz2)ay+(6xy2z)az+(15x2y2z+6y2z)ax+(15x3yz+6xyz2)ay+(15x3y2+6xy2z)]U(V)+V(U)=(45x2y2z+6y2z2)ax+(30x3yz+12xyz2)ay+(15x3y2+12xy2z)az

Thus, the expression: (UV)=UV+VU is verified.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!

Chapter 3 Solutions

Elements Of Electromagnetics

Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Introduction to Kinematics; Author: LearnChemE;https://www.youtube.com/watch?v=bV0XPz-mg2s;License: Standard youtube license