Concept explainers
Interpretation:
The given chemical equations are need to be balanced.
Concept Introduction:
Chemical equations are symbolic representations of
The reactants are written on the left side whereas the products are written on the right side of an arrow.
Chemical equations are denoted using chemical formulae of the elements and compounds involved.
The
Atomicity is defined as the number of atoms in a molecule of an element.
Chemical formulae of compounds are written on the basis of their molecularity.
Molecularity is the number of molecules that come to react in an elementary (single-step) reaction.
A balanced chemical equation shows the same number of atoms of each element on both sides of the arrow.
Chemical equations are balanced on the basis of the Law of Conservation of Mass.
Answer to Problem 25QP
Solution:
a)
b)
c)
d)
e)
f)
g)
h)
i)
j)
k)
l)
m)
n)
Explanation of Solution
a)
There are two atoms of nitrogen on either side of the equation. However, there are five oxygen atoms on the left side and six oxygen atoms on the right side of the equation. The entire equation is balanced by adding the coefficient
b)
There is one atom of potassium on either side of the equation. Also, there is one atom of nitrogen on both the sides. However, on the left there are three oxygen atoms while on the right, there are four oxygen atoms. The entire equation is balanced by adding the coefficient
c)
There are two atoms of nitrogen on either side of the equation. However, there is an imbalance in the number of hydrogen and oxygen atoms. In case of hydrogen, there are four atoms on the left side and two on the right side. In case of oxygen, there are three atoms on the left side and two on the right side. The entire equation is balanced by adding the coefficient
d)
There are two atoms of nitrogen on either side of the equation. However, there are four atoms of hydrogen on the left side and two atoms on the right side. Also, there are two oxygen atoms on the left side and one on the right side of the equation. The entire equation is balanced by adding the coefficient
e)
There is one atom of sodium on the left side while two atoms on the right side of the equation. For hydrogen, there is one atom on the left but two atoms on the right. For carbon also, there is one atom in the left but two atoms on the right. For oxygen, there are three atoms on the left but six atoms on the right of the equation. The entire equation is balanced by adding the coefficient
f)
There are four atoms of phosphorus on the left side but only one on the right side of the equation. In case of hydrogen, there are two atoms on the left side and three on the right. In case of oxygen, there are eleven atoms on the left but four on the right. The entire equation is balanced by adding the coefficient
g)
There is only one atom of calcium on either side of the equation. It is the same case with the elements carbon and oxygen, where it is one carbon atom and three oxygen atoms on the either side of the equation. However, there are discrepancies in the number of hydrogen and chlorine atoms. In case of chlorine, there is one on the left side and two on the right side. In case of hydrogen, there is one atom on the left side but two on the right side. The entire equation is balanced by adding the coefficient
h)
Apart from hydrogen, the number of all other atoms is different on the either side of the equation. In case of hydrogen, there are two atoms on both sides of the equation. On the other hand, for aluminium, there is one atom on the left and two atoms on the right. For sulphur, there is one atom on the left but three on the right. For oxygen, there are four atoms on the left but twelve on the right. The entire equation is balanced by adding the coefficient
i)
There is one atom of carbon on both sides of the equation. For potassium, there is one atom on the left but two on the right side of the equation. For hydrogen, there is one atom on the left side and two on the right side of the equation. For oxygen, there is one atom on the left side but four on the right side. The entire equation is balanced by adding the coefficient
j)
There is one atom of carbon on both sides of the equation. For hydrogen, there are four atoms on the left side and two on the right side of the equation. For oxygen, there are two atoms on the left side but three on the right side. The entire equation is balanced by adding the coefficient
k)
There is one atom of carbon on both sides of the equation. For hydrogen, there are two atoms on the left side but six on the right side of the equation. For oxygen, there is one atom on the left side but two on the right side. For beryllium, there is one atom on the left side but one on the right side. The entire equation is balanced by adding the coefficient
l)
There is one atom of copper on both sides of the equation. For oxygen, there are three atoms on the left side but eight on the right side of the equation. For hydrogen, there is one atom on the left side but two on the right side. For nitrogen, there is one atom on the left side but three on the right side. The entire equation is balanced by adding the coefficient
m)
There is one atom of sulphur on both sides of the equation. For oxygen, there are three atoms on the left side but seven on the right side of the equation. For hydrogen, there is one atom on the left side but four on the right side. For nitrogen, there is one atom on the left side and one on the right side. The entire equation is balanced by adding the coefficient
n)
There is one atom of copper on both sides of the equation. It is the same for oxygen. For hydrogen, there are three atoms on the left side but two on the right side. For nitrogen, there is one atom on the left side but two on the right side. The entire equation is balanced by adding the coefficient
Want to see more full solutions like this?
Chapter 3 Solutions
Chemistry
- Iron oxide ores, commonly a mixture of FeO and Fe2O3, are given the general formula Fe3O4. They yield elemental iron when heated to a very high temperature with either carbon monoxide or elemental hydrogen. Balance the following equations for these processes: Fe3O4(s)+H2(g)Fe(s)+H2O(g)Fe3O4(s)+CO(g)Fe(s)+CO2(g)arrow_forwardThe space shuttle environmental control system handles excess CO2 (which the astronauts breathe out; it is 4.0% by mass of exhaled air) by reacting it with lithium hydroxide, LiOH, pellets to form lithium carbonate, Li2CO3, and water. If there are seven astronauts on board the shuttle, and each exhales 20. L of air pee minute, how long could clean air be generated if there were 25,000 g of LiOH pellets available for each shuttle mission? Assume the density of air is 0.0010 g/mL.arrow_forward3.92 Many chemical reactions take place in the catalytic con- verter of a car. In one of these reactions, nitric oxide (NO) reacts with ammonia (NH3) to give nitrogen (N2) and water. Write a balanced equation for this reaction.arrow_forward
- 4.28 One of the steps in the manufacture of nitric acid is the oxidation of ammonia shown in this equation: 4NH3(g)+5O2(g)4NO(g)+6H2O(g) If 43.0 kg of NH3 reacts with 35.4 kg of O2, what mass of NO forms?arrow_forward4.106 An ore sample with a mass of 670 kg contains 27.7% magnesium carbonate, MgCO3. If all of the magnesium carbonate in this ore sample is decomposed to form carbon dioxide, describe how to determine what mass of CO2 is evolved during the process.arrow_forwardBoron forms an extensive series of compounds with hydrogen, all with the general formula BxHy. To analyze one of these compounds, you burn it in air and isolate the boron in the form of B2O3 and the hydrogen in the form of water. You find that 0.1482 g BxHy gives 0.4221 g B2O3 when burned in excess O2. Determine the empirical I formula of BxHy.arrow_forward
- In a reaction, 1.2 g element A reacts with exactly 3.2 g oxygen to form an oxide, AOx; 2.4 g element A reacts with exactly 3.2 g oxygen to form a second oxide, AOy. (a) Determine the ratio x:y. (b) If x = 2, determine what the identity of element A might be.arrow_forward3.87 Nitric acid (HNO3) can be produced by the reaction of ni- trogen dioxide (NO2) and water. Nitric oxide (NO) is also formed as a product. Write a balanced chemical equation for this reaction.arrow_forwardTungsten (W) metal, which is used to make incandescent bulb filaments, is produced by the reaction WO3+3H23H2O+W How many grams of H2 are needed to produce 1.00 g of W?arrow_forward
- You take 1.00 g of an aspirin tablet (a compound consisting solely of carbon, hydrogen, and oxygen), burn it in air, and collect 2.20 g CO2 and 0.400 g H2O. You know that the molar mass of aspirin is between 170 and 190 g/mol. Reacting 1 mole of salicylic acid with I mole of acetic anhydride (C4H6O3) gives you 1 mole of aspirin and 1 mole of acetic acid (C2H4O2). Use this information to determine the molecular formula of salicylic acid.arrow_forwardMany cereals are made with high moisture content so that the cereal can be formed into various shapes before it is dried. A cereal product containing 58% H2O by mass is produced at the rate of 1000. kg/h. What mass of water must be evaporated per hour if the final product contains only 20.% water?arrow_forwardChalky, white crystals in mineral collections are often labeled borax, which has the molecular formula Na2B4O7 10H2O, when actually they are partially dehydrated samples with the molecular formula Na2B4O7 5H2O, which is more stable under the storage conditions. Real crystals of borax are colorless and transparent. (a) Calculate the percent mass that the mineral has lost when it partially dehydrates. (b) Is the percent boron by mass the same in both compounds?arrow_forward
- General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning