HEAT & MASS TRANSFER (LL) W/CONNECT CARD
6th Edition
ISBN: 9781266204166
Author: CENGEL
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Question
Chapter 3, Problem 201P
To determine
To find:Increase of the heat transfer from the tube per meter of its length as a result of adding fins.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
ฉันต้องการหา อุณหภูมิสุดท้ายของกระบวนการนี้และงานของกระบวนการนี้มีค่าเท่าใด
The pressure and temperature at the beginning of compression of a cold air-standard Diesel cycle are 100 kPa and 300 K , respectively. At the end of the heat addition, the divssure is 7.2 MPa and the temperature is 2050 K . Assume constant specific heats evaluated at 300 K .
Determine:(a) the compression ratio.(b) the cutoff ratio.(c) the percent thermal efficiency of the cycle.(d) the mean effective pressure, in kPa .
Q3. Determine the reaction force at A and force P applied at 45° to the horizontal just necessary to start a
roller 100 cm diameter over an obstruction 25 cm high, if the roller weighs 1000 N, as shown in Fig. 3.
Fig. (3)
Chapter 3 Solutions
HEAT & MASS TRANSFER (LL) W/CONNECT CARD
Ch. 3 - Consider heat conduction through a wall of...Ch. 3 - Consider heat conduction through a plane wall....Ch. 3 - What does the thermal resistance of a medium...Ch. 3 - Can we defme the convection resistance for a unit...Ch. 3 - Consider steady heat transfer through the wall of...Ch. 3 - How is the combined heat transfer coefficient...Ch. 3 - Why are the convection and the radiation...Ch. 3 - Consider steady one-dimensional heat transfer...Ch. 3 - Someone comments that a microwave oven can be...Ch. 3 - Consider two cold canned drinks, one wrapped in a...
Ch. 3 - The bottom of a pan is made of a 4-mm-thick...Ch. 3 - Consider a surface of area A at which the...Ch. 3 - How does the thermal resistance network associated...Ch. 3 - Consider steady one-dimensional heat transfer...Ch. 3 - Consider a window glass consisting of two...Ch. 3 - Prob. 16PCh. 3 - Consider a person standing in a room at 20C with...Ch. 3 - Consider an electrically heated brick house...Ch. 3 - A12-cm18-cm circuit board houses on its surface...Ch. 3 - Water is boiling in a 25-cm-diameter aluminum pan...Ch. 3 - A cylindrical resistor element on a circuit board...Ch. 3 - Prob. 22PCh. 3 - A1.0m1.5m double-pane window consists of two...Ch. 3 - Prob. 24PCh. 3 - Prob. 25PCh. 3 - Prob. 26PCh. 3 - Prob. 27PCh. 3 - Prob. 28EPCh. 3 - To defog the rear window of an automobile, a very...Ch. 3 - A transparent film is to be bonded onto the top...Ch. 3 - To defrost ice accumulated on the outer surface of...Ch. 3 - Prob. 32PCh. 3 - Prob. 33PCh. 3 - Prob. 34PCh. 3 - Prob. 35PCh. 3 - Heat is to be conducted along a circuit board that...Ch. 3 - Prob. 37EPCh. 3 - Consider a house that has a 10m20-m base and a...Ch. 3 - Prob. 39EPCh. 3 - Prob. 40PCh. 3 - Prob. 41PCh. 3 - Prob. 42PCh. 3 - Prob. 43PCh. 3 - What is thermal contact resistance? How is it...Ch. 3 - Will the thermal contact resistance be greater for...Ch. 3 - Explain how the thermal contact resistance can be...Ch. 3 - A waII consists of two layers of insulation...Ch. 3 - Prob. 48CPCh. 3 - Consider two surfaces pressed against each other....Ch. 3 - Prob. 50PCh. 3 - Two 5-cm-diameter, 15-cm-long aluminum bars...Ch. 3 - Prob. 52PCh. 3 - Two identical aluminum plates with thickness of 30...Ch. 3 - A tvolayer wall is made of two metal plates, with...Ch. 3 - Prob. 55PCh. 3 - An aluminum plate and a stainless steel plate are...Ch. 3 - Prob. 57PCh. 3 - Prob. 58PCh. 3 - Prob. 59PCh. 3 - Prob. 60PCh. 3 - Prob. 61PCh. 3 - What are the two approaches used in the...Ch. 3 - The thermal resistance networks can also be used...Ch. 3 - When plotting the thermal resistance network...Ch. 3 - A 10-cm-thick vall is to be constructed with...Ch. 3 - Prob. 66EPCh. 3 - Prob. 67PCh. 3 - Prob. 68PCh. 3 - Prob. 69PCh. 3 - Prob. 70PCh. 3 - Prob. 71PCh. 3 - Prob. 72PCh. 3 - A 12-m-long and 5-m-high wall is constructed of...Ch. 3 - Prob. 74EPCh. 3 - Prob. 75PCh. 3 - Prob. 76PCh. 3 - Prob. 77PCh. 3 - What is an infinitely long cylinder? When is it...Ch. 3 - Can the thermal resistance concept be used for a...Ch. 3 - Consider a short cylinder whose top and bottom...Ch. 3 - Prob. 81PCh. 3 - Prob. 82PCh. 3 - Prob. 83PCh. 3 - Superheated steam at an average temperature 20C is...Ch. 3 - Prob. 85PCh. 3 - Prob. 86PCh. 3 - Prob. 87EPCh. 3 - Prob. 88EPCh. 3 - Prob. 89EPCh. 3 - Prob. 90PCh. 3 - Prob. 91PCh. 3 - Prob. 92PCh. 3 - Prob. 93EPCh. 3 - Prob. 94PCh. 3 - Prob. 95PCh. 3 - Prob. 96PCh. 3 - Liquid hydrogen is flowing through an insulated...Ch. 3 - Exposure to high concentrations of gaseous ammonia...Ch. 3 - A mixture of chemicals is flowing in a pipe...Ch. 3 - Ice slurry is being transported in a pipe...Ch. 3 - Prob. 101PCh. 3 - Prob. 102PCh. 3 - Prob. 103PCh. 3 - What is the critical radius of insulation? How is...Ch. 3 - Prob. 105CPCh. 3 - Prob. 106CPCh. 3 - Prob. 107CPCh. 3 - A pipe is insulated such that the outer radius of...Ch. 3 - A 0.083-in-diameter electrical wire at 90F is...Ch. 3 - Repeat Prob. 3-109E, assuming a thermal contact...Ch. 3 - Prob. 111PCh. 3 - Prob. 112PCh. 3 - Hot air is to be cooled as it is forced to flow...Ch. 3 - Prob. 114CPCh. 3 - Prob. 115CPCh. 3 - The fins attached to a surface are determined to...Ch. 3 - Explain how the fins enhance heat transfer from a...Ch. 3 - How does the overall effectiveness of a finned...Ch. 3 - Hot water is to be cooled as it flows through the...Ch. 3 - Consider two finned surfaces that are identical...Ch. 3 - The heat transfer surface area of a fin is equal...Ch. 3 - Does the (a) efficiency and (b) effectiveness of a...Ch. 3 - Two pin fins are identical, except that the...Ch. 3 - Two plate fins of constant rectangular cross...Ch. 3 - Two finned surfaces are identical, except that the...Ch. 3 - Obtain a relation for the fin efficiency for a fin...Ch. 3 - Prob. 127PCh. 3 - Consider a very long rectangular fin attached to a...Ch. 3 - Prob. 129PCh. 3 - Prob. 130PCh. 3 - Prob. 131PCh. 3 - Prob. 132PCh. 3 - Prob. 133EPCh. 3 - Prob. 134EPCh. 3 - Prob. 135PCh. 3 - Prob. 136PCh. 3 - Prob. 137PCh. 3 - Prob. 138PCh. 3 - Prob. 139PCh. 3 - Prob. 140PCh. 3 - Prob. 141PCh. 3 - Prob. 142PCh. 3 - Prob. 143PCh. 3 - Prob. 144PCh. 3 - Prob. 145PCh. 3 - Prob. 146PCh. 3 - The human body is adaptable to extreme climatic...Ch. 3 - Consider the conditions of Example 3-14 in the...Ch. 3 - Consider the conditions of Example 3-14 in the...Ch. 3 - Prob. 150PCh. 3 - What is a conduction shape factor? How is it...Ch. 3 - What is the value of conduction shape factors in...Ch. 3 - Prob. 153PCh. 3 - A thin-walled cylindrical container is placed...Ch. 3 - Prob. 155PCh. 3 - Prob. 156PCh. 3 - Prob. 157PCh. 3 - Prob. 158EPCh. 3 - Prob. 159PCh. 3 - Prob. 160PCh. 3 - Prob. 161PCh. 3 - Prob. 162PCh. 3 - Prob. 163PCh. 3 - Prob. 164PCh. 3 - Consider a house with a flat roof whose outer...Ch. 3 - Prob. 166PCh. 3 - Radioactive material, stored in a spherical vessel...Ch. 3 - What is the R-value of a wall? How does it differ...Ch. 3 - What is effective emissivity for a plane-parallel...Ch. 3 - Prob. 170CPCh. 3 - What is a radiant barrier? What kinds of materials...Ch. 3 - Consider a house whose attic space is ventilated...Ch. 3 - Prob. 173PCh. 3 - Prob. 174PCh. 3 - Prob. 175PCh. 3 - Prob. 176PCh. 3 - Prob. 177PCh. 3 - Prob. 178PCh. 3 - Determine the winter R-value and the U-factor of a...Ch. 3 - The overall heat transfer coefficient (the...Ch. 3 - Prob. 181EPCh. 3 - Determine the summer and winter R-values. in m2 ....Ch. 3 - The overall heat transfer coefficient of a wall is...Ch. 3 - Two homes are identical, except that the walls of...Ch. 3 - Prob. 185PCh. 3 - Consider two identical people each generating 60 V...Ch. 3 - Cold conditioned air at 12C is flowing inside a...Ch. 3 - Hot water is flowing at an average velocity of 1.5...Ch. 3 - Prob. 189PCh. 3 - Prob. 190PCh. 3 - Prob. 191PCh. 3 - Prob. 192PCh. 3 - Prob. 193PCh. 3 - Prob. 194PCh. 3 - Prob. 195PCh. 3 - Prob. 196PCh. 3 - Prob. 197PCh. 3 - A total of 10 rectangular aluminum fins...Ch. 3 - Prob. 199PCh. 3 - A plane wall surface at 200C is to be cooled with...Ch. 3 - Prob. 201PCh. 3 - Prob. 202PCh. 3 - Prob. 203PCh. 3 - Prob. 204PCh. 3 - A 0.6-rn-diameter, 1.9-rn-long cylindrical tank...Ch. 3 - Prob. 206PCh. 3 - Prob. 207PCh. 3 - A thin-walled spherical tank is buried in the...Ch. 3 - Heat is lost at a rate of 275 W per m2 area of a 1...Ch. 3 - Prob. 210PCh. 3 - Heat is generated steadily in a 3-cm-diameter...Ch. 3 - Prob. 212PCh. 3 - Prob. 213PCh. 3 - Prob. 214PCh. 3 - Prob. 215PCh. 3 - Prob. 216PCh. 3 - Consider two walls. A and B, with the same surface...Ch. 3 - Prob. 218PCh. 3 - A room at 20C air temperature is losing heat to...Ch. 3 - Prob. 220PCh. 3 - A 1-cm-diameter, 30cm-long fin made of aluminum...Ch. 3 - A hot surface at 80C in air at 20C is to be cooled...Ch. 3 - A cylindrical pin fin of diameter 0.6 cm and...Ch. 3 - A 3-cm-long. 2-nuti x 2-mm rectangular...Ch. 3 - Two finned surfaces with long fins are identical,...Ch. 3 - A 20-cm-diameter hot sphere at 120C is buried in...Ch. 3 - A 25-cm-diameter, 2.4-rn-long vertical cylinder...Ch. 3 - Prob. 228PCh. 3 - The walls of a food storage facility are made of a...Ch. 3 - The equivalent thermal resistance for the thermal...Ch. 3 - Prob. 231PCh. 3 - Prob. 232PCh. 3 - Prob. 233PCh. 3 - The fin efficiency is defined as the ratio of the...Ch. 3 - Prob. 235PCh. 3 - In the United States, building insulation is...Ch. 3 - Prob. 237PCh. 3 - A plane brick wall (k=0.7W/m.K) and is 10 cm...Ch. 3 - The temperature in deep space is close to absolute...Ch. 3 - In the design of electronic components, it is...Ch. 3 - Using cylindrical samples of the same material,...Ch. 3 - Find out about the wall construction of the cabins...Ch. 3 - Prob. 243PCh. 3 - A house with 200-m2 floor space is to be heated...
Knowledge Booster
Similar questions
- Correct Answer is written below(preferably handwritten solution) . Detailed and complete fbd only please. I will upvote, thank you.arrow_forwardThe pressure and temperature at the beginning of compression of a cold air-standard Diesel cycle are 100 kPa and 300 K , respectively. At the end of the heat addition, the pressure is 7.2 MPa and the temperature is 2050 K . Assume constant specific heats evaluated at 300 K . Determine:(a) the compression ratio.(b) the cutoff ratio.(c) the percent thermal efficiency of the cycle.(d) the mean effective pressure, in kPaarrow_forwardCorrect Answer is written below(preferably handwritten solution) . Detailed and complete fbd only please. I will upvote, thank you.arrow_forward
- Correct Answer is written below(preferably handwritten solution) . Detailed and complete fbd only please. I will upvote, thank you. 7: The round bar AB in the figure is formed into a quartercircular arc of radius R that lies in the horizontal plane. The bar is built in atB and carries the vertical force P at end A. Given: P = 3 kN, R = 900 mm andα = 25°.1. Calculate the bending moment (kN-m) acting at section C.2. Calculate the torsional moment (kN-m) acting at section C.3. If the allowable torsional stress is limited to 65 MPa, calculate therequired minimum diameter of the bar (mm).ANSWERS: 1.14 kN-m; 0.25 kN-m; 60 mmarrow_forwardCorrect Answer is written below(preferably handwritten solution) . Detailed and complete fbd only please. I will upvote, thank you.arrow_forwardCurrent Attempt in Progress A cold air-standard Otto cycle has a compression ratio of 9 and the temperature and pressure at the beginning of the compression process are 520°R and 14.2 lbf/in.², respectively. The heat addition per unit mass of air is 600 Btu/lb. Assume constant specific heats evaluted at 520°R. Determine: (a) the maximum temperature, in °R. (b) the maximum pressure, in lbf/in.² (c) the percent thermal efficiency. (d) the mean effective pressure, in lbf/in.²arrow_forward
- Correct Answer is written below(preferably handwritten solution) . Detailed and complete fbd only please. I will upvote, thank you.arrow_forwardCorrect answer and complete detailed fbd only. I will upvote. : The two steel shafts, each with one end builtinto a rigid support, have flanges attached to their freeends. The flanges are to be bolted together. However,initially there is a 6⁰ mismatch in the location of the boltholes as shown in the figure. Determine the maximumshear stress(ksi) in each shaft after the flanges have beenbolted together. The shear modulus of elasticity for steelis 12 x 106 psi. Neglect deformations of the bolts and theflanges.arrow_forwardCorrect detailed answer and complete fbd only. I will upvote. The compound shaft, composed of steel,aluminum, and bronze segments, carries the two torquesshown in the figure. If TC = 250 lb-ft, determine the maximumshear stress developed in each material (in ksi). The moduliof rigidity for steel, aluminum, and bronze are 12 x 106 psi, 4x 106 psi, and 6 x 106 psi, respectivelyarrow_forward
- Correct answer and complete fbd only. I will upvote. A flanged bolt coupling consists of two concentric rows of bolts. The inner row has 6 nos. of 16mm diameterbolts spaced evenly in a circle of 250mm in diameter. The outer row of has 10 nos. of 25 mm diameter bolts spaced evenly in a circle of 500mm in diameter. If the allowable shear stress on one bolt is 60 MPa, determine the torque capacity of the coupling. The Poisson’s ratio of the inner row of bolts is 0.2 while that of the outer row is 0.25 and the bolts are steel, E =200 GPa.arrow_forwardCorrect answer and complete fbd only. I will upvote. The shaft carries a total torque T0 that is uniformly distributedover its length L. Determine the angle of twist (degrees) of the shaft in termsif T0 = 1.2 kN-m, L = 2 m, G = 80 GPa, and diameter = 120 mmarrow_forward7) find the Emax for figure below. 250N Ans: Tmay 7.5 MPa Gomm 350mm 50mm 4arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY

Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY