Mindtap For Herman's Delmar's Standard Textbook Of Electricity, 2 Terms Printed Access Card (mindtap Course List)
Mindtap For Herman's Delmar's Standard Textbook Of Electricity, 2 Terms Printed Access Card (mindtap Course List)
7th Edition
ISBN: 9781337900621
Author: Stephen L. Herman
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 3, Problem 1RQ

Why is static electricity considered to be a charge and not a current?

Expert Solution & Answer
Check Mark
To determine

Why is static electricity considered to be a charge and not a current?

Answer to Problem 1RQ

Static electricity refers to electrons that are immobile and not moving. Hence, it is a charge and not a current.

Explanation of Solution

Description:

The word static is used to express any quantity that is not moving or idle. Static electricity refers to electrons that are idle and immobile. Hence, it is considered to be a charge and not a current. A static charge can be either positive or negative depending upon the number of electrons. If an object has less electrons, it will have a positive charge; and if it has an excess of electrons, it will carry a negative charge.

Insulators are the only materials that hold the electrons motionless and keep them from flowing to a different position. Hence, electrostatic charges are built up on insulator materials. Electrostatic charges can be built up on a conductor only if it is electrically insulated from the surrounding objects.

Conclusion:

The reasons why static electricity is considered to be a charge and not a current has been explained.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
2. (35 points) Use you program to investigative properties of a four step linear pathway. Just extend the model given in question 1 to include an additional two species x2 and x3. You can assume simple irreversible mass-action kinetic on each reaction. I recommend you use the following values for the rate constants: 1 = 0.6; k2 = 1.8; k3 = 0.5; k40.04. This will enable you to more easily answer the following questions. You can also assume that the input is the source X and you can set its value to one. You may find that the plot of the phase change at x3 is broken at -180 degrees because it wraps around. To avoid this you can use the method: phase = np.unwrap(phase) to make sure the phase plot is continuous. [10] i) Compute and show the Bode plots for x1, x2 and x3 with respect to the input Xo. [5] ii) Do you see a pattern with the maximum phase shifts as you move from x₁ to x3? [10] iii) Can you explain this pattern? [5] iv) What would you predict would be the maximum phase shift for…
Please answer all The zombies showed up while you were sleeping!  The zombie alarm you built goes off as they open the door.  You jolt awake to see an alpha-zombie charging through the door.  The alphas are zombies that turned all of the zombies in its army.  If you can take down this one zombie, all the others pouring into the room should fall as well.  Luckily, your group was prepared for this eventuality.  Another member of your team has constructed the zombie shocker circuit shown in Figure 5, using some batteries for the voltage source, some rusty metal for the resistors and a coil of wire for the inductor.  The switch is just you pulling apart two wires to open the circuit (while holding them by their insulated sheaths).   1. Construct the circuit shown in Figure 15 in the Circuit JS simulator.   2. Start the simulation with switch SW1 in the closed position.  You’ve been charging this circuit all night, so you’ll want to let the circuit run for a while (roughly 30 seconds at max…
Please answer all questions 1. Calculate the values of the following without using Circuit JS. Assume the circuit has reached steady state. Show these calculations: a) Voltage across and current through C1. b) Voltage across and current through L1. c) Voltage across and current through R5. 2. Construct the circuit in the Circuit JS simulator [1]. 3. Perform a simulation and determine the following values. Record them. Allow the circuit to reach steady state. a) Voltage across and current through C1. b) Voltage across and current through L1. c) Voltage across and current through R5. 4. Include a screen shot of the simulator window (including showing the values listed above).  5. Answer the following questions: a) In a DC circuit, what does a capacitor look like? b) In a DC circuit, what does an inductor look like?
Knowledge Booster
Background pattern image
Electrical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Text book image
Electricity for Refrigeration, Heating, and Air C...
Mechanical Engineering
ISBN:9781337399128
Author:Russell E. Smith
Publisher:Cengage Learning
What is an electric furnace and how does it work?; Author: Fire & Ice Heating and Air Conditioning Inc;https://www.youtube.com/watch?v=wjAWecPGi0M;License: Standard Youtube License