Concept explainers
(a)
To identify an action-reaction pair of forces.
(a)
![Check Mark](/static/check-mark.png)
Answer to Problem 1Q
The force the person exerts on the wall and the force the wall exerts on the person is an action-reaction pair.
Explanation of Solution
Action – reaction pair of forces always acts on separate object.
When a person pushes on a wall, the wall pushes back on the person. Here the person exerts force on the wall and wall in turn exerts force on the person. The force exerted by the person on the wall is equal in magnitude and opposite in direction to the force exerted by the wall on the person and they acts on different objects.
Conclusion:
Therefore, the force the person exerts on the wall and the force the wall exerts on the person is an action-reaction pair.
(b)
To identify an action-reaction pair of forces, book resting on the table.
(b)
![Check Mark](/static/check-mark.png)
Answer to Problem 1Q
The gravitational force exerted the book on the table and the normal force exerted by the table on the book is action-reaction pair force.
Explanation of Solution
The gravitational force exerted by the book on the table and the normal force exerted by the table on the book is action-reaction pair force and they acts on different objects. The gravitational force exerted by the book on the table is equal in magnitude and opposite in direction to the force exerted by the table on the book.
Conclusion:
Therefore, the gravitational force exerted the book on the table and the normal force exerted by the table on the book is action-reaction pair force.
(c)
To identify an action-reaction pair of forces, a hockey puck sliding across an icy surface.
(c)
![Check Mark](/static/check-mark.png)
Answer to Problem 1Q
The
Explanation of Solution
The frictional force exerted by the moving hockey puck on the ice and the frictional force exerted by the ice on the hockey puck is action-reaction pair force and they acts on different objects. The frictional force exerted by the moving hockey puck on the ice is equal in magnitude and opposite in direction to the frictional force exerted by the ice on the hockey puck.
Conclusion:
Therefore, the frictional force exerted by the moving hockey puck on the ice and the frictional force exerted by the ice on the hockey puck is action-reaction pair force.
(d)
To identify an action-reaction pair of forces, a car accelerating from rest.
(d)
![Check Mark](/static/check-mark.png)
Answer to Problem 1Q
The frictional force exerted by the tire on the road and the force exerted by the road on the tire is action-reaction pair force.
Explanation of Solution
The frictional force exerted by the tire on the road and the force exerted by the road on the tire is action-reaction pair force and they acts on different objects. The frictional force exerted by the rotating tire on the road is equal in magnitude and opposite in direction to the frictional force exerted by the road on the tire.
Conclusion:
Therefore, the frictional force exerted by the tire on the road and the force exerted by the road on the tire is action-reaction pair force.
(e)
To identify an action-reaction pair of forces, an object undergoing free fall in a vacuum.
(e)
![Check Mark](/static/check-mark.png)
Answer to Problem 1Q
The gravitational force exerted on the object by the object on which the object is falling and gravitational force on the falling object on which the object is falling is an action-reaction pair.
Explanation of Solution
The gravitational force exerted on the object by the object on which the object is falling is equal in magnitude and opposite in direction to gravitational force on the falling object on which the object is falling is an action-reaction pair and they acts on different objects.
Conclusion:
Therefore, the gravitational force exerted on the object by the object on which the object is falling and gravitational force on the falling object on which the object is falling is an action-reaction pair.
(f)
To identify an action-reaction pair of forces, a basketball player jumping to dunk a basketball.
(f)
![Check Mark](/static/check-mark.png)
Answer to Problem 1Q
The force exerted by the basketball player against the floor and the force the floor exerts on the basket ball are action-reaction pairs.
Explanation of Solution
The force exerted by the basketball player against the floor while he dunks the ball and the force the floor exerts on the basket ball are equal in magnitude and opposite in direction and they acts on different objects. The force exerted by the basketball player against the floor while and the force the floor exerts on the basket ball are action-reaction pairs.
Conclusion:
Therefore, the force exerted by the basketball player against the floor while and the force the floor exerts on the basket ball are action-reaction pairs.
(g)
To identify an action-reaction pair of forces, a person throwing a baseball.
(g)
![Check Mark](/static/check-mark.png)
Answer to Problem 1Q
The force the person exerts against the basket ball to accelerate it and the force the basketball exerts on the person is action-reaction pair.
Explanation of Solution
The force the person exerts against the basket ball to accelerate it and the force the basketball exerts on the person is equal in magnitude and opposite in direction and they acts on different objects. The force the person exerts against the basket ball to accelerate it and the force the basketball exerts on the person is action-reaction pair.
Conclusion:
Therefore, the force the person exerts against the basket ball to accelerate it and the force the basketball exerts on the person is action-reaction pair.
Want to see more full solutions like this?
Chapter 3 Solutions
Bundle: College Physics: Reasoning And Relationships, 2nd + Webassign Printed Access Card For Giordano's College Physics, Volume 1, 2nd Edition, Multi-term
- 10. Inx 8.817 11.9.30 × 10-6 12.0.00500010 13.331,000,000 14.6.0005 15.pH=-log[H3O+} = 12.1830arrow_forwardRequired information In a standard tensile test, a steel rod of 1 3 -in. diameter is subjected to a tension force of P = 21 kips. It is given that v= 0.30 and E= 29 × 106 psi. 1-in. diameter P P -8 in. Determine the change in diameter of the rod. (Round the final answer to six decimal places.) The change in diameter of the rod is - in.arrow_forward5.84 ... If the coefficient of static friction between a table and a uni- form, massive rope is μs, what fraction of the rope can hang over the edge of the table without the rope sliding? 5.97 Block A, with weight Figure P5.97 3w, slides down an inclined plane S of slope angle 36.9° at a constant speed while plank B, with weight w, rests on top of A. The plank is attached by a cord to the wall (Fig. P5.97). (a) Draw a diagram of all the forces acting on block A. (b) If the coefficient of kinetic friction is the same between A and B and between S and A, determine its value. B 36.9°arrow_forward
- 5.60 An adventurous archaeologist crosses between two rock cliffs by slowly going hand over hand along a rope stretched between the cliffs. He stops to rest at the middle of the rope (Fig. P5.60). The rope will break if the tension in it exceeds 2.50 X 104 N, and our hero's mass is 90.0 kg. (a) If the angle is 10.0°, what is the tension in the rope? (b) What is the smallest value can have if the rope is not to break? Figure P5.60arrow_forwardplease answer the question thanks!arrow_forward5.48 ⚫ A flat (unbanked) curve on a highway has a radius of 170.0 m. A car rounds the curve at a speed of 25.0 m/s. (a) What is the minimum coefficient of static friction that will prevent sliding? (b) Suppose that the highway is icy and the coefficient of static friction between the tires and pavement is only one-third of what you found in part (a). What should be the maximum speed of the car so that it can round the curve safely?arrow_forward
- 5.77 A block with mass m₁ is placed on an inclined plane with slope angle a and is connected to a hanging block with mass m₂ by a cord passing over a small, frictionless pulley (Fig. P5.74). The coef- ficient of static friction is μs, and the coefficient of kinetic friction is Mk. (a) Find the value of m₂ for which the block of mass m₁ moves up the plane at constant speed once it is set in motion. (b) Find the value of m2 for which the block of mass m₁ moves down the plane at constant speed once it is set in motion. (c) For what range of values of m₂ will the blocks remain at rest if they are released from rest?arrow_forward5.78 .. DATA BIO The Flying Leap of a Flea. High-speed motion pictures (3500 frames/second) of a jumping 210 μg flea yielded the data to plot the flea's acceleration as a function of time, as shown in Fig. P5.78. (See "The Flying Leap of the Flea," by M. Rothschild et al., Scientific American, November 1973.) This flea was about 2 mm long and jumped at a nearly vertical takeoff angle. Using the graph, (a) find the initial net external force on the flea. How does it compare to the flea's weight? (b) Find the maximum net external force on this jump- ing flea. When does this maximum force occur? (c) Use the graph to find the flea's maximum speed. Figure P5.78 150 a/g 100 50 1.0 1.5 0.5 Time (ms)arrow_forward5.4 ⚫ BIO Injuries to the Spinal Column. In the treatment of spine injuries, it is often necessary to provide tension along the spi- nal column to stretch the backbone. One device for doing this is the Stryker frame (Fig. E5.4a, next page). A weight W is attached to the patient (sometimes around a neck collar, Fig. E5.4b), and fric- tion between the person's body and the bed prevents sliding. (a) If the coefficient of static friction between a 78.5 kg patient's body and the bed is 0.75, what is the maximum traction force along the spi- nal column that W can provide without causing the patient to slide? (b) Under the conditions of maximum traction, what is the tension in each cable attached to the neck collar? Figure E5.4 (a) (b) W 65° 65°arrow_forward
- The correct answers are a) 367 hours, b) 7.42*10^9 Bq, c) 1.10*10^10 Bq, and d) 7.42*10^9 Bq. Yes I am positve they are correct. Please dont make any math errors to force it to fit. Please dont act like other solutiosn where you vaugley state soemthing and then go thus, *correct answer*. I really want to learn how to properly solve this please.arrow_forwardI. How many significant figures are in the following: 1. 493 = 3 2. .0005 = | 3. 1,000,101 4. 5.00 5. 2.1 × 106 6. 1,000 7. 52.098 8. 0.00008550 9. 21 10.1nx=8.817arrow_forwardplease solve and answer the question correctly please. Thank you!! (Hint in second photo)arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133104261/9781133104261_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305952300/9781305952300_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285737027/9781285737027_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337553292/9781337553292_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133939146/9781133939146_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780534408961/9780534408961_smallCoverImage.gif)