
To show: The chess master will have played exactly

Answer to Problem 1E
It is
Explanation of Solution
Given:
The cumulative number of games played on the first n days is denoted by
The chess master must play at least one game per day, but not exceeding 12 games per week.
The maximum number of games the chess mater can play is 132 and thus,
Theorem used:
If
Description:
From the given condition, the sequence
Thus, the sequence
Thus, each of the numbers
From the above theorem, any of the two values in
Observe that no two numbers
Thus, there must be i and j such that
The chess master can play k games in total on the days
Hence, the required result is proved.
Moreover, if the chess master plays 22 games on the succession of days, then the total number of games played by the master will exceed 132.
Therefore, it is
Want to see more full solutions like this?
Chapter 3 Solutions
Introductory Combinatorics
- Calculus lll May I please have the solutions for the following examples? Thank youarrow_forwardCalculus lll May I please have the solutions for the following exercises that are blank? Thank youarrow_forwardThe graph of 2(x² + y²)² = 25 (x²-y²), shown in the figure, is a lemniscate of Bernoulli. Find the equation of the tangent line at the point (3,1). -10 Write the expression for the slope in terms of x and y. slope = 4x³ + 4xy2-25x 2 3 4x²y + 4y³ + 25y Write the equation for the line tangent to the point (3,1). LV Q +arrow_forward
- Find the equation of the tangent line at the given value of x on the curve. 2y3+xy-y= 250x4; x=1 y=arrow_forwardFind the equation of the tangent line at the given point on the curve. 3y² -√x=44, (16,4) y=] ...arrow_forwardFor a certain product, cost C and revenue R are given as follows, where x is the number of units sold in hundreds. Cost: C² = x² +92√x+56 Revenue: 898(x-6)² + 24R² = 16,224 dC a. Find the marginal cost at x = 6. dx The marginal cost is estimated to be $ ☐ . (Do not round until the final answer. Then round to the nearest hundredth as needed.)arrow_forward
- find the area.arrow_forwardThe graph of 3 (x² + y²)² = 100 (x² - y²), shown in the figure, is a lemniscate of Bernoulli. Find the equation of the tangent line at the point (4,2). АУ -10 10 Write the expression for the slope in terms of x and y. slope =arrow_forwardUse a geometric series to represent each of the given functions as a power series about x=0, and find their intervals of convergence. a. f(x)=5/(3-x) b. g(x)= 3/(x-2)arrow_forward
- Page of 2 ZOOM + 1) Answer the following questions by circling TRUE or FALSE (No explanation or work required). i) If A = [1 -2 1] 0 1 6, rank(A) = 3. (TRUE FALSE) LO 0 0] ii) If S = {1,x,x², x³} is a basis for P3, dim(P3) = 4 with the standard operations. (TRUE FALSE) iii) Let u = (1,1) and v = (1,-1) be two vectors in R². They are orthogonal according to the following inner product on R²: (u, v) = U₁V₁ + 2U2V2. ( TRUE FALSE) iv) A set S of vectors in an inner product space V is orthogonal when every pair of vectors in S is orthogonal. (TRUE FALSE) v) Dot product of two perpendicular vectors is zero. (TRUE FALSE) vi) Cross product of two perpendicular vectors is zero. (TRUE FALSE) 2) a) i) Determine which function(s) are solutions of the following linear differential equation. - y (4) — 16y= 0 • 3 cos x • 3 cos 2x -2x • e • 3e2x-4 sin 2x ii) Find the Wronskian for the set of functions that you found from i) as the solution of the differential equation above. iii) What does the result…arrow_forward6 m 10 m # 4 marrow_forward108° (y+8)° 125° (2x+11)° 98° 98°arrow_forward
- Discrete Mathematics and Its Applications ( 8th I...MathISBN:9781259676512Author:Kenneth H RosenPublisher:McGraw-Hill EducationMathematics for Elementary Teachers with Activiti...MathISBN:9780134392790Author:Beckmann, SybillaPublisher:PEARSON
- Thinking Mathematically (7th Edition)MathISBN:9780134683713Author:Robert F. BlitzerPublisher:PEARSONDiscrete Mathematics With ApplicationsMathISBN:9781337694193Author:EPP, Susanna S.Publisher:Cengage Learning,Pathways To Math Literacy (looseleaf)MathISBN:9781259985607Author:David Sobecki Professor, Brian A. MercerPublisher:McGraw-Hill Education





