Henry, Tom, and Fred are breaking up their partnership and dividing among themselves the partnership’s real estate assets equally owned by the three of them. The assets are divided into three shares
Table 3-12
S1 | S2 | S3 | |
|
|
|
|
|
|
|
|
|
|
|
|
a. Which of the shares are fair shares to Henry?
b. Which of the shares are fair shares to Tom?
c. Which of the shares are fair shares to Fred?
d. Find all possible fair divisions of the assets using
e. Of the fair divisions found in (d), which one is the best?
(a)
To find:
Fair shares for Henry from the given table.
Answer to Problem 1E
Solution:
Fair shares for Henry are
Explanation of Solution
Given:
The given table for value of shares to each player is shown in table 1.
Table 1
S1 | S2 | S3 | |
Fair share for each player should be
Calculation:
The value of shares to each player is,
S1 | S2 | S3 | |
There are total 3 players in which assets will be divided so the fair share for each player would be
Then according to table fair shares for Henry will be
Conclusion:
Thus, fair shares for Henry are
(b)
To find:
Fair shares for Tom from the given table.
Answer to Problem 1E
Solution:
Fair shares for Tom are
Explanation of Solution
Given:
The given table for value of shares to each player is shown in table 1.
Table 1
S1 | S2 | S3 | |
Fair share for each player should be
Calculation:
The value of shares to each player is,
S1 | S2 | S3 | |
There are total 3 players in which assets will be divided so the fair share for each player would be
Then according to table fair shares for Tom will be
Conclusion:
Thus, fair shares for Tom are
(c)
To find:
Fair shares for Fred from the given table.
Answer to Problem 1E
Solution:
Fair shares for Fred are
Explanation of Solution
Given:
The given table for value of shares to each player is shown in table 1.
Table 1
S1 | S2 | S3 | |
Fair share for each player should be
Calculation:
The value of shares to each player is,
S1 | S2 | S3 | |
There are total 3 players in which assets will be divided so the fair share for each player would be
Then according to table fair shares for Fred will be
Conclusion:
Thus, fair shares for Fred are
(d)
To find:
All possible fair divisions of the assets using given table.
Answer to Problem 1E
Solution:
The fair division of assets is possible in two ways:
i. Henry gets
ii. Henry gets
Explanation of Solution
Given:
The given table for value of shares to each player is shown in table 1.
Table 1
S1 | S2 | S3 | |
Fair share for each player should be
Calculation:
The value of shares to each player is,
S1 | S2 | S3 | |
There are total 3 players in which assets will be divided so the fair share for each player would be
Henry and Tom both have fair shares
i. Henry gets
ii. Henry gets
Conclusion:
Thus, the fair division of assets is possible in two ways:
i. Henry gets
ii. Henry gets
(e)
To find:
The best fair division among the fair divisions found in part (4).
Answer to Problem 1E
Solution:
The best fair division of assets is: Henry gets
Explanation of Solution
Given:
The given table for value of shares to each player is shown in table 1.
Table 1
S1 | S2 | S3 | |
Fair share for each player should be
Calculation:
The value of shares to each player is,
S1 | S2 | S3 | |
There are total 3 players in which assets will be divided so the fair share for each player would be
Henry and Tom both have fair shares
i. Henry gets
ii. Henry gets
The best fair division is the one in which players are more happy. Henry would be more happy in choice (i) and Tom also would be more happy in choice (i). Fred is happy in equally in both choices.
So the best fair division of assets is: Henry gets
Conclusion:
Thus, the best fair division of assets is: Henry gets
Want to see more full solutions like this?
Chapter 3 Solutions
EXCURSIONS IN MODERN MATH
Additional Math Textbook Solutions
Calculus: Early Transcendentals (2nd Edition)
A First Course in Probability (10th Edition)
Elementary Statistics
Elementary & Intermediate Algebra
Elementary Statistics (13th Edition)
Finite Mathematics for Business, Economics, Life Sciences and Social Sciences
- Let g(z) = z-i z+i' (a) Evaluate g(i) and g(1). (b) Evaluate the limits lim g(z), and lim g(z). 2-12 (c) Find the image of the real axis under g. (d) Find the image of the upper half plane {z: Iz > 0} under the function g.arrow_forwardk (i) Evaluate k=7 k=0 [Hint: geometric series + De Moivre] (ii) Find an upper bound for the expression 1 +2x+2 where z lies on the circle || z|| = R with R > 10. [Hint: Use Cauchy-Schwarz]arrow_forward4. 5. 6. Prove that p (gp) is a tautology using the laws of propositional logic. Prove that p((pVq) → q) is a tautology using the laws of propositional logic. Let us say a natural number n is ok if there are two natural numbers whose sum is n and whose product is n. (Convention: the natural numbers consist of 0, 1, 2,...) (a) Give a logical expression that means "n is ok". (b) Show that 0 and 4 are both ok. (c) Give a logical expression that means "every natural number is ok". (d) Give a logical expression that means "it is not the case that every number is ok". Push the negations into the expression as far as possible.arrow_forward
- 7. Let E(x, y) be a two-variable predicate meaning "x likes to eat y", where the domain of x is people and the domain of y is foods. Write logical expressions that represent the following English propositions: (a) Alice doesn't like to eat pizza. (b) Everybody likes to eat at least one food. (c) Every student likes to eat at least one food other than pizza. (d) Everyone other than Alice likes to eat at least two different foods. (e) There are two different people that like to eat the same food.arrow_forward21. Determine for which values of m the function (x) = x™ is a solution to the given equation. a. 3x2 d²y dx² b. x2 d²y +11x dy - 3y = 0 dx dy dx2 x dx 5y = 0arrow_forwardhelp me solve thisarrow_forward
- help me solve thisarrow_forwardHint: You may use the following derivative rules: ddxsin(x)=cos(x) ddxcos(x)=−sin(x) ddxln(x)=1x Find the equation of the tangent line to the curve y=4sinx at the point (π6,2).The equation of this tangent line isarrow_forwardQuestion Find the following limit. Select the correct answer below: 1 2 0 4 5x lim sin (2x)+tan 2 x→arrow_forward
- A quality characteristic of a product is normally distributed with mean μ and standard deviation σ = 1. Speci- fications on the characteristic are 6≤x≤8. A unit that falls within specifications on this quality characteristic results in a profit of Co. However, if x 8, the profit is -C2. Find the value ofμ that maximizes the expected profit.arrow_forwardA) The output voltage of a power supply is normally distributed with mean 5 V and standard deviation 0.02 V. If the lower and upper specifications for voltage are 4.95 V and 5.05 V, respectively, what is the probability that a power supply selected at random conform to the specifications on voltage? B) Continuation of A. Reconsider the power supply manufacturing process in A. Suppose We wanted to improve the process. Can shifting the mean reduce the number of nonconforming units produced? How much would the process variability need to be reduced in order to have all but one out of 1000 units conform to the specifications?arrow_forwardA mechatronic assembly is subjected to a final functional test. Suppose that defects occur at random in these assemblies, and that defects occur according to a Poisson distribution with parameter >= 0.02. (a) What is the probability that an assembly will have exactly one defect? (b) What is the probability that an assembly will have one or more defects? (c) Suppose that you improve the process so that the occurrence rate of defects is cut in half to λ = 0.01. What effect does this have on the probability that an assembly will have one or more defects?arrow_forward