
Henry, Tom, and Fred are breaking up their partnership and dividing among themselves the partnership’s real estate assets equally owned by the three of them. The assets are divided into three shares
Table 3-12
S1 | S2 | S3 | |
|
|
|
|
|
|
|
|
|
|
|
|
a. Which of the shares are fair shares to Henry?
b. Which of the shares are fair shares to Tom?
c. Which of the shares are fair shares to Fred?
d. Find all possible fair divisions of the assets using
e. Of the fair divisions found in (d), which one is the best?

(a)
To find:
Fair shares for Henry from the given table.
Answer to Problem 1E
Solution:
Fair shares for Henry are
Explanation of Solution
Given:
The given table for value of shares to each player is shown in table 1.
Table 1
S1 | S2 | S3 | |
Fair share for each player should be
Calculation:
The value of shares to each player is,
S1 | S2 | S3 | |
There are total 3 players in which assets will be divided so the fair share for each player would be
Then according to table fair shares for Henry will be
Conclusion:
Thus, fair shares for Henry are

(b)
To find:
Fair shares for Tom from the given table.
Answer to Problem 1E
Solution:
Fair shares for Tom are
Explanation of Solution
Given:
The given table for value of shares to each player is shown in table 1.
Table 1
S1 | S2 | S3 | |
Fair share for each player should be
Calculation:
The value of shares to each player is,
S1 | S2 | S3 | |
There are total 3 players in which assets will be divided so the fair share for each player would be
Then according to table fair shares for Tom will be
Conclusion:
Thus, fair shares for Tom are

(c)
To find:
Fair shares for Fred from the given table.
Answer to Problem 1E
Solution:
Fair shares for Fred are
Explanation of Solution
Given:
The given table for value of shares to each player is shown in table 1.
Table 1
S1 | S2 | S3 | |
Fair share for each player should be
Calculation:
The value of shares to each player is,
S1 | S2 | S3 | |
There are total 3 players in which assets will be divided so the fair share for each player would be
Then according to table fair shares for Fred will be
Conclusion:
Thus, fair shares for Fred are

(d)
To find:
All possible fair divisions of the assets using given table.
Answer to Problem 1E
Solution:
The fair division of assets is possible in two ways:
i. Henry gets
ii. Henry gets
Explanation of Solution
Given:
The given table for value of shares to each player is shown in table 1.
Table 1
S1 | S2 | S3 | |
Fair share for each player should be
Calculation:
The value of shares to each player is,
S1 | S2 | S3 | |
There are total 3 players in which assets will be divided so the fair share for each player would be
Henry and Tom both have fair shares
i. Henry gets
ii. Henry gets
Conclusion:
Thus, the fair division of assets is possible in two ways:
i. Henry gets
ii. Henry gets

(e)
To find:
The best fair division among the fair divisions found in part (4).
Answer to Problem 1E
Solution:
The best fair division of assets is: Henry gets
Explanation of Solution
Given:
The given table for value of shares to each player is shown in table 1.
Table 1
S1 | S2 | S3 | |
Fair share for each player should be
Calculation:
The value of shares to each player is,
S1 | S2 | S3 | |
There are total 3 players in which assets will be divided so the fair share for each player would be
Henry and Tom both have fair shares
i. Henry gets
ii. Henry gets
The best fair division is the one in which players are more happy. Henry would be more happy in choice (i) and Tom also would be more happy in choice (i). Fred is happy in equally in both choices.
So the best fair division of assets is: Henry gets
Conclusion:
Thus, the best fair division of assets is: Henry gets
Want to see more full solutions like this?
Chapter 3 Solutions
Excursions in Modern Mathematics, Books a la carte edition (9th Edition)
Additional Math Textbook Solutions
Calculus: Early Transcendentals (2nd Edition)
A First Course in Probability (10th Edition)
Elementary Statistics
Elementary & Intermediate Algebra
Elementary Statistics (13th Edition)
Finite Mathematics for Business, Economics, Life Sciences and Social Sciences
- 16:39 < 文字 15:28 |美图秀秀 保存 59% 5G 46 照片 完成 Bonvicino - Period Name: 6. A right regular hexagonal pyramid with the top removed (as shown in Diagram 1) in such a manner that the top base is parallel to the base of the pyramid resulting in what is shown in Diagram 2. A wedge (from the center) is then removed from this solid as shown in Diagram 3. 30 Diogram 1 Diegrom 2. Diagram 3. If the height of the solid in Diagrams 2 and 3 is the height of the original pyramid, the radius of the base of the pyramid is 10 cm and each lateral edge of the solid in Diagram 3 is 12 cm, find the exact volume of the solid in Diagram 3, measured in cubic meters. Show all work. (T 文字 贴纸 消除笔 涂鸦笔 边框 马赛克 去美容arrow_forwardAnswer question 4 pleasearrow_forward16:39 < 文字 15:28 |美图秀秀 保存 59% 5G 46 照片 完成 Bonvicino - Period Name: 6. A right regular hexagonal pyramid with the top removed (as shown in Diagram 1) in such a manner that the top base is parallel to the base of the pyramid resulting in what is shown in Diagram 2. A wedge (from the center) is then removed from this solid as shown in Diagram 3. 30 Diogram 1 Diegrom 2. Diagram 3. If the height of the solid in Diagrams 2 and 3 is the height of the original pyramid, the radius of the base of the pyramid is 10 cm and each lateral edge of the solid in Diagram 3 is 12 cm, find the exact volume of the solid in Diagram 3, measured in cubic meters. Show all work. (T 文字 贴纸 消除笔 涂鸦笔 边框 马赛克 去美容arrow_forward
- Problem 11 (a) A tank is discharging water through an orifice at a depth of T meter below the surface of the water whose area is A m². The following are the values of a for the corresponding values of A: A 1.257 1.390 x 1.50 1.65 1.520 1.650 1.809 1.962 2.123 2.295 2.462|2.650 1.80 1.95 2.10 2.25 2.40 2.55 2.70 2.85 Using the formula -3.0 (0.018)T = dx. calculate T, the time in seconds for the level of the water to drop from 3.0 m to 1.5 m above the orifice. (b) The velocity of a train which starts from rest is given by the fol- lowing table, the time being reckoned in minutes from the start and the speed in km/hour: | † (minutes) |2|4 6 8 10 12 14 16 18 20 v (km/hr) 16 28.8 40 46.4 51.2 32.0 17.6 8 3.2 0 Estimate approximately the total distance ran in 20 minutes.arrow_forward- Let n = 7, let p = 23 and let S be the set of least positive residues mod p of the first (p − 1)/2 multiple of n, i.e. n mod p, 2n mod p, ..., p-1 2 -n mod p. Let T be the subset of S consisting of those residues which exceed p/2. Find the set T, and hence compute the Legendre symbol (7|23). 23 32 how come? The first 11 multiples of 7 reduced mod 23 are 7, 14, 21, 5, 12, 19, 3, 10, 17, 1, 8. The set T is the subset of these residues exceeding So T = {12, 14, 17, 19, 21}. By Gauss' lemma (Apostol Theorem 9.6), (7|23) = (−1)|T| = (−1)5 = −1.arrow_forwardLet n = 7, let p = 23 and let S be the set of least positive residues mod p of the first (p-1)/2 multiple of n, i.e. n mod p, 2n mod p, ..., 2 p-1 -n mod p. Let T be the subset of S consisting of those residues which exceed p/2. Find the set T, and hence compute the Legendre symbol (7|23). The first 11 multiples of 7 reduced mod 23 are 7, 14, 21, 5, 12, 19, 3, 10, 17, 1, 8. 23 The set T is the subset of these residues exceeding 2° So T = {12, 14, 17, 19, 21}. By Gauss' lemma (Apostol Theorem 9.6), (7|23) = (−1)|T| = (−1)5 = −1. how come?arrow_forward
- Shading a Venn diagram with 3 sets: Unions, intersections, and... The Venn diagram shows sets A, B, C, and the universal set U. Shade (CUA)' n B on the Venn diagram. U Explanation Check A- B Q Search 田arrow_forward3. A different 7-Eleven has a bank of slurpee fountain heads. Their available flavors are as follows: Mountain Dew, Mountain Dew Code Red, Grape, Pepsi and Mountain Dew Livewire. You fill five different cups full with each type of flavor. How many different ways can you arrange the cups in a line if exactly two Mountain Dew flavors are next to each other? 3.2.1arrow_forwardBusinessarrow_forward
