Bundle: College Physics, Loose-Leaf Version, 10th, + WebAssign Printed Access Card for Serway/Vuille's College Physics, 10th Edition, Multi-Term
Bundle: College Physics, Loose-Leaf Version, 10th, + WebAssign Printed Access Card for Serway/Vuille's College Physics, 10th Edition, Multi-Term
10th Edition
ISBN: 9781305367395
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 3, Problem 19P

A commuter airplane starts from ar. airport and takes the route shown in Figure P3.19. The plane first flies to city A, located 175 km away in a direction 30.0° north of east. Next, it flies for 150 km 20.0° west of north, to city B. Finally, the plane flies 190 km due west, to city C. Find the location of city C relative to the location of the starling point.

Chapter 3, Problem 19P, A commuter airplane starts from ar. airport and takes the route shown in Figure P3.19. The plane

Figure P3.19

Expert Solution & Answer
Check Mark
To determine
 The location and direction of the city from the starting point.

Answer to Problem 19P

Solution:

The location and direction of the city C is 245km and 21.3° West of North respectively.

Explanation of Solution

Given Info:

The magnitude of vector OA is 175km , the magnitude of vector AB is 150km , and the magnitude of vector BC is 190km .

Write the formula to calculate the x-component of OA.

x1=OAcosθ1

  • x1 is the horizontal or x-component of the vector OA
  • OA is the magnitude of the vector OA
  • θ1 is the angle made by the OA vector with respect to the x- axis

Substitute 30.0° for θ1 and 175km for OA to calculate x1 .

x1=(175km)cos(30.0°)=(175km)(0.866)=151.55km

Write the formula to calculate the x-component of AB.

x2=ABcosθ2

  • x2 is the horizontal or x-component of the vector AB
  • AB is the magnitude of the vector AB
  • θ2 is the angle made by the AB vector with respect to the x- axis

Substitute 110.0° for θ2 and 150km for AB to calculate x2 .

x2=(150km)cos(110.0°)=(150km)(0.34)=51.3km

Write the formula to calculate the x-component of BC.

x3=BCcosθ3

  • x3 is the horizontal or x-component of the vector BC
  • BC is the magnitude of the vector BC
  • θ3 is the angle made by the BC vector with respect to the x- axis

Substitute 180.0° for θ3 and 190km for BC to calculate x3 .

x3=(190km)cos(180.0°)=(190km)(1)=190km

Write the formula to calculate the total x component.

x=x1+x2+x3

  • x is the total x component.

Use 151.55km for x1 , 51.3km for x2 and 190km for x3 in the above expression for x.

x=151.55km51.3km190km=89.75km

Write the formula to calculate the y-component of OA.

y1=OAsinθ1

  • y1 is the vertical or y-component of the vector OA
  • θ1 is the angle made by the OA vector with respect to the y- axis

Substitute 30.0° for θ1 and 175km for OA to calculate y1 .

y1=(175km)sin(30.0°)=(175km)(0.5)=87.5km

Write the formula to calculate the y-component of AB.

y2=ABsinθ2

  • x2 is the vertical or y-component of the vector AB
  • θ2 is the angle made by the AB vector with respect to the y- axis

Substitute 110.0° for θ2 and 150km for AB to calculate y2 .

y2=(150km)sin(110.0°)=(150km)(0.94)=140.95km

Write the formula to calculate the y-component of BC.

y3=BCsinθ3

  • y3 is the vertical or y-component of the vector BC
  • θ3 is the angle made by the BC vector with respect to the y- axis

Substitute 180.0° for θ3 and 190km for BC to calculate y3 .

y3=(190km)sin(180.0°)=(190km)(0)=0km

Write the formula to calculate the total y component.

y=y1+y2+y3

  • y is the total y component.

Use 87.5km for y1 , 140.95km for y2 and 0km for y3 in the above expression for y.

y=87.5km+140.95km+0km=228.45km

Write the formula to calculate the location of the city.

r=x2+y2

  • r is the location of the city from the starting point

Substitute 89.75km for x and 228.45km for y to calculate r.

r=(89.75km)2+(228.45km)2=8010.5+52212.5=245.4km245km

Write the formula to calculate the direction of the city.

θ=tan1(|x|y)=tan1(|89.5km|228.5km)=tan1(0.39)=21.3°

Conclusion:

Therefore, the location and direction of the city C is 245km and 21.3° West of North respectively

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
I do not understand the process to answer the second part of question b. Please help me understand how to get there!
Rank the six combinations of electric charges on the basis of the electric force acting on 91. Define forces pointing to the right as positive and forces pointing to the left as negative. Rank in increasing order by placing the most negative on the left and the most positive on the right. To rank items as equivalent, overlap them. ▸ View Available Hint(s) [most negative 91 = +1nC 92 = +1nC 91 = -1nC 93 = +1nC 92- +1nC 93 = +1nC -1nC 92- -1nC 93- -1nC 91= +1nC 92 = +1nC 93=-1nC 91 +1nC 92=-1nC 93=-1nC 91 = +1nC 2 = −1nC 93 = +1nC The correct ranking cannot be determined. Reset Help most positive
Part A Find the x-component of the electric field at the origin, point O. Express your answer in newtons per coulomb to three significant figures, keeping in mind that an x component that points to the right is positive. ▸ View Available Hint(s) Eoz = Η ΑΣΦ ? N/C Submit Part B Now, assume that charge q2 is negative; q2 = -6 nC, as shown in (Figure 2). What is the x-component of the net electric field at the origin, point O? Express your answer in newtons per coulomb to three significant figures, keeping in mind that an x component that points to the right is positive. ▸ View Available Hint(s) Eoz= Η ΑΣΦ ? N/C

Chapter 3 Solutions

Bundle: College Physics, Loose-Leaf Version, 10th, + WebAssign Printed Access Card for Serway/Vuille's College Physics, 10th Edition, Multi-Term

Ch. 3 - A hiker walks from (x1, y1) = (4.00 km. 3.00 km)...Ch. 3 - A hiker walks 3.00 km north and then 4.00 km west,...Ch. 3 - A car is traveling east at 25.0 m/s when it turns...Ch. 3 - A skier leaves the end of a horizontal ski jump at...Ch. 3 - A catapult launches a large stone from ground...Ch. 3 - A cruise ship sails due north at 4.50 m/s while a...Ch. 3 - Prob. 1CQCh. 3 - Prob. 2CQCh. 3 - As a projectile moves in its path, is there any...Ch. 3 - Construct motion diagrams showing the velocity and...Ch. 3 - Explain whether the following particles do or do...Ch. 3 - A ball is projected horizontally from the top of a...Ch. 3 - A spacecraft drifts through space at a constant...Ch. 3 - Determine which of the following moving objects...Ch. 3 - Two projectiles are thrown with the same initial...Ch. 3 - A ball is thrown upward in the air by a passenger...Ch. 3 - A projectile is launched at some angle to the...Ch. 3 - A baseball is thrown from the outfield toward the...Ch. 3 - A student throws a heavy red ball horizontally...Ch. 3 - A car moving around a circular track, with...Ch. 3 - As an apple tree is transported by a truck moving...Ch. 3 - Prob. 1PCh. 3 - Vector A has a magnitude of 8.00 units and makes...Ch. 3 - Vector A is 3.00 units in length and points along...Ch. 3 - Three displacements are A = 200 m due south, R =...Ch. 3 - A roller coaster moves 200 ft horizontally and...Ch. 3 - An airplane flies 200 km due west from city A to...Ch. 3 - A plane flies from base camp to lake A, a distance...Ch. 3 - A force F1, of magnitude 6.00 units acts on an...Ch. 3 - A man in a maze makes three consecutive...Ch. 3 - Prob. 10PCh. 3 - The magnitude of vector A is 35.0 units and points...Ch. 3 - A figure skater glides along a circular path of...Ch. 3 - A girl delivering newspapers covers her route by...Ch. 3 - A hiker starts at his camp and moves the following...Ch. 3 - A vector has an x-component of 25.0 units and a...Ch. 3 - A quarterback takes the ball from the line of...Ch. 3 - The eye of a hurricane passes over Grand Bahama...Ch. 3 - A map suggests that Atlanta is 730 miles in a...Ch. 3 - A commuter airplane starts from ar. airport and...Ch. 3 - The helicopter view in Figure P3.20 shows two...Ch. 3 - A novice golfer on the green takes three strokes...Ch. 3 - One of the fastest recorded pitches in major...Ch. 3 - A student stands at the edge of a cliff and throws...Ch. 3 - A rock is thrown upward from the level ground in...Ch. 3 - The best leaper in the animal kingdom is the puma,...Ch. 3 - The record distance in the sport of throwing...Ch. 3 - A placekicker must kick a football from a point...Ch. 3 - From the window of a building, a ball is tossed...Ch. 3 - A brick is thrown upward from the top of a...Ch. 3 - An artillery shell is fired with an initial...Ch. 3 - A car is parked on a cliff overlooking the ocean...Ch. 3 - A fireman d = 50.0 m away from a burning building...Ch. 3 - A projectile is launched with an initial speed of...Ch. 3 - A playground is on the flat roof of a city school,...Ch. 3 - A jet airliner moving initially at 3.00 102 mi/h...Ch. 3 - A car travels due east with a speed of 50.0 km/h....Ch. 3 - A bolt drops from the ceiling of a moving train...Ch. 3 - A Coast Guard cutter detects an unidentified ship...Ch. 3 - An airplane maintains a speed of 630 km/h relative...Ch. 3 - Suppose a chinook salmon needs to jump a waterfall...Ch. 3 - A river has a steady speed of 0.500 m/s. A student...Ch. 3 - This is a symbolic version of Problem 29. A river...Ch. 3 - An airplane maintains a speed of 630 km/h relative...Ch. 3 - A moving walkway at an airport has a speed v1 and...Ch. 3 - How long does it take ail automobile traveling in...Ch. 3 - You can use any coordinate system you like to...Ch. 3 - A Nordic jumper goes off a ski jump at an angle of...Ch. 3 - In a local diner, a customer slides an empty...Ch. 3 - Towns A and B in Figure P3.35 are 80.0 km apart. A...Ch. 3 - A chinook salmon has a maximum underwater speed of...Ch. 3 - A rocket is launched at an angle of 53.0 above the...Ch. 3 - Two canoeists in identical canoes exert the same...Ch. 3 - (a) If a person can jump a maximum horizontal...Ch. 3 - A farm truck travels due east with a constant...Ch. 3 - A home run is hit in such a way that the baseball...Ch. 3 - A ball is thrown straight upward and returns to...Ch. 3 - A quarterback throws a football toward a receiver...Ch. 3 - A 2.00-m-tall basketball player is standing on the...Ch. 3 - In a very popular lecture demonstration, a...Ch. 3 - Figure P3.60 illustrates the difference in...Ch. 3 - By throwing a ball at an angle of 45, a girl can...Ch. 3 - The equation of a parabola is y = ax2 + bx + c,...Ch. 3 - A hunter wishes to cross a river that is 1.5 km...Ch. 3 - When baseball outfielders throw the ball, they...Ch. 3 - A daredevil is shot out of a cannon at 45.0 to the...Ch. 3 - Chinook salmon are able to move upstream faster by...Ch. 3 - A student derides to measure the muzzle velocity...Ch. 3 - A golf ball with an initial speed of 50.0 m/s...Ch. 3 - A landscape architect is planning an artificial...Ch. 3 - One strategy in a snowball fight is to throw a...Ch. 3 - A dart gun is fired while being held horizontally...Ch. 3 - The determined Wile E. Coyote is out once more to...Ch. 3 - A truck loaded with cannonball watermelons stops...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Introduction to Vectors and Their Operations; Author: Professor Dave Explains;https://www.youtube.com/watch?v=KBSCMTYaH1s;License: Standard YouTube License, CC-BY