Concept explainers
(a)
The time of his flight .
(a)
Answer to Problem 18P
The time of his flight is
Explanation of Solution
Write the expression for the vertical final velocity of the basketball player.
Here,
Write the expression for the time of flight,
Conclusion:
For upward flight,
Substitute
For downward flight,
Substitute
Substitute
Therefore, the time of his flight is
(b)
The horizontal velocity component of the basketball player at instant of take-off .
(b)
Answer to Problem 18P
The horizontal velocity component of the basketball player at instant of take-off is
Explanation of Solution
Write the total horizontal displacement of the basketball player,
Here,
Conclusion:
Substitute
Therefore, the horizontal velocity component of the basketball player at instant of take-off is
(c)
The vertical velocity component of the basketball player at instant of take-off .
(c)
Answer to Problem 18P
The vertical velocity component of the basketball player at instant of take-off is
Explanation of Solution
From part (a), for upward flight,
Write the expression for the vertical final velocity of the basketball player.
Here,
Conclusion:
For upward flight,
Substitute
Therefore, the vertical velocity component of the basketball player at instant of take-off is
(d)
The take-off angle of the basketball player .
(d)
Answer to Problem 18P
The take-off angle of the basketball player is
Explanation of Solution
Write the take-off angle of the basketball player,
Here,
Conclusion:
Substitute
Therefore, the take-off angle of the basketball player is
(e)
The flight time of the whitetail deer .
(e)
Answer to Problem 18P
The flight time of the whitetail deer is
Explanation of Solution
From part (a),
Write the expression for the vertical final velocity of the basketball player.
Here,
Write the expression for the flight time of the whitetail deer,
Here,
Conclusion:
For upward flight,
Substitute
For downward flight,
Substitute
Substitute
Therefore, the flight time of the whitetail deer is
Want to see more full solutions like this?
Chapter 3 Solutions
Principles of Physics: A Calculus-Based Text
- The soccer ball shown weighs I lb and has a velocity of 20 fps at 40° to the horizontal prior to striking the soccer player's head. After the soccer player heads the ball, it has a velocity of 30 fps at 20° to the horizontal. If the duration of the impact is 0.15 sec, determine a. Express the initial and final velocities of the ball in Cartesian vector form b. Magnitude and direction of the average force exerted on the soccer ball by the player's head in Cartesian vector form.arrow_forwardConsider a projectile on Earth, where +z is vertically upward. A cannon that is 1.50 m tall sits on the edge of a 50.0 m tall cliff oriented to fire in the +x direction. The cannon fires a 6.50 kg cannonball with an initial velocity of 110 m/s at an angle of 55° above the horizontal. Neglect air resistance. a) Write the acceleration of the cannon ball as a function of time as a column vector. b. write the canon ball's velocity as a function of time as a column vector c. write the canon ball's position as a function of time as a column vector d. how long does it take the canon ball to reach the highest point in it's trajectory e. what is the peak height the cannon ball attains pls provide answers in handwritten mannerarrow_forwardTwo friends are playing billiards at an arcade center. One guy hit the cue ball to strike at another ball where it is initially at rest. After the collision caused by the ball that was at rest, the cue ball moves at 2.50 m/s along a line making an angle e=14.0° with its original direction of motion and the second balI has a speed of 1.50 m/s. Find the answer for Part a,b and c. (Note: Both balls have the same mass.) Part A: Find the angle 0 between the direction of the motion of the second ball and the original direction of motion of the cue ball. Part B: Find the cue ball's original speed? Part C: Figure out whether kinetic energy is conserved?arrow_forward
- A 0.50 kg football is kicked from ground level with an initial velocity of 13.0 m/s [F 37° U] (37° above the horizontal axis). It is caught at a height of 2.0 m. If you assume that there is no interference and that the ball is on the way back down after having reached maximum height, how far will the ball travel horizontally before it is caught? 1.arrow_forwardI need help with this physics question #arrow_forwardI need help with question 2.arrow_forward
- Sharon pushes a tall box across the floor. Her arms (and therefore her push force) of F = 400 N make a theta= 30 degree angle with the horizontal. Since the box rests on ball bearings it is essentially frictionless. Sick of her job, Sharon decides to give the box a brief shove lasting only t = 0.2 seconds. Find the velocity (magnitude and direction) of the box at the completion of Sharon's shove, assuming (a) the box's weight is 490 N, and (b) the box's weight is 122.5 N. In both cases, the box starts from rest.arrow_forwardA hockey puck with mass 0.160kg is at rest at the origin on the horizontal, frictionless surfaceof the rink. At t = 0, a player applies a force of 0.250N to the puck parallel to the surface. Hecontinues to apply the force until t = 2.00s. What are the position and speed of the puck at t =2.00?arrow_forwardNeed answerASAP.arrow_forward
- Please helparrow_forwardIn the figure, a body with a mass of 2 kg moves under the influence of two constant forces F1 = 5N and F2 = 4N in the xy plane. At time t = 0, the object is at point 0 and its speed is V = 2i + j (m / s). What is the acceleration of the particle and its position after 2 seconds in terms of the unit vector?arrow_forwardA block of mass m = 3 kg is sliding along a frictionless inclined surface that makes an angle of y = 30°with respect to the horizontal surface. At the lowest points of the inclined surface, a projectile is fired at a speed of vo = 12 m/s that makes an angle 0, = 45° with respect to the horizontal. Our aim of this problem is to find the time when the projectile will hit the block. e = 450 h = ? Ro= 10 m P = 30° x= ? (a) Find the time when the projectile hits the block. (Given, the initial distance between the block and the projectile along the inclined surface at t=0 is Ro = 10 m as shown in the figure)arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning