Concept explainers
Focus Problem: Water Solve the focus problem at the beginning of this chapter.
The Yellowstone River starts in massive and beautiful Yellowstone Lake. Then it flows through prime trout fishing areas to the famous Yellowstone Falls. After it leaves the park, the river is an important source of water for wildlife, ranchers, farmers, and cities downstream. How much water does leave the park each year? The annual flow of the Yellowstone River (units
25.9 | 32.4 | 33.1 | 19.1 | 17.5 | 24.9 |
27.1 | 29.1 | 25.6 | 31.8 | ||
21.0 | 45.1 | 30.8 | 34.3 | 25.9 | 18.6 |
23.7 | 24.1 | 23.9 |
(a) Is there a "guaranteed" amount of water farmers, ranchers, and cities will get from the Yellowstone River each year?
(b) What is the “expected” annual How from the Yellowstone snowmelt? Find the mean, the
(c) Find the
(d) Find a 75% Chebyshev interval around the mean.
(e) Give a five-number summary of annual water How from the Yellowstone River and make a box-and-whisker plot. Interpret the five-number summary and the box-and-whisker plot. Where does the middle portion of the data lie? What is the
(f) The Madison River is a smaller but very important source of water flowing out of Yellowstone Park from a different drainage. Ten recent years of annual water flow data are shown below (units
3.83 | 3.81 | 4.01 | 4.84 | 5.81 | 5.50 | 4.31 | 5.81 | 4.31 | 4.67 |
Although smaller, is the Madison more reliable? Use the coefficient of variation to make an estimate.
(g) Interpretation Based on the data, would it be safe to allocate at least 27 units of Yellowstone River water each year for agricultural and domestic use? Why or why not?
Trending nowThis is a popular solution!
Chapter 3 Solutions
Understanding Basic Statistics
- A well-known company predominantly makes flat pack furniture for students. Variability with the automated machinery means the wood components are cut with a standard deviation in length of 0.45 mm. After they are cut the components are measured. If their length is more than 1.2 mm from the required length, the components are rejected. a) Calculate the percentage of components that get rejected. b) In a manufacturing run of 1000 units, how many are expected to be rejected? c) The company wishes to install more accurate equipment in order to reduce the rejection rate by one-half, using the same ±1.2mm rejection criterion. Calculate the maximum acceptable standard deviation of the new process.arrow_forward5. Let X and Y be independent random variables and let the superscripts denote symmetrization (recall Sect. 3.6). Show that (X + Y) X+ys.arrow_forward8. Suppose that the moments of the random variable X are constant, that is, suppose that EX" =c for all n ≥ 1, for some constant c. Find the distribution of X.arrow_forward
- 9. The concentration function of a random variable X is defined as Qx(h) = sup P(x ≤ X ≤x+h), h>0. Show that, if X and Y are independent random variables, then Qx+y (h) min{Qx(h). Qr (h)).arrow_forward10. Prove that, if (t)=1+0(12) as asf->> O is a characteristic function, then p = 1.arrow_forward9. The concentration function of a random variable X is defined as Qx(h) sup P(x ≤x≤x+h), h>0. (b) Is it true that Qx(ah) =aQx (h)?arrow_forward
- 3. Let X1, X2,..., X, be independent, Exp(1)-distributed random variables, and set V₁₁ = max Xk and W₁ = X₁+x+x+ Isk≤narrow_forward7. Consider the function (t)=(1+|t|)e, ER. (a) Prove that is a characteristic function. (b) Prove that the corresponding distribution is absolutely continuous. (c) Prove, departing from itself, that the distribution has finite mean and variance. (d) Prove, without computation, that the mean equals 0. (e) Compute the density.arrow_forward1. Show, by using characteristic, or moment generating functions, that if fx(x) = ½ex, -∞0 < x < ∞, then XY₁ - Y2, where Y₁ and Y2 are independent, exponentially distributed random variables.arrow_forward
- 1. Show, by using characteristic, or moment generating functions, that if 1 fx(x): x) = ½exarrow_forward1990) 02-02 50% mesob berceus +7 What's the probability of getting more than 1 head on 10 flips of a fair coin?arrow_forward9. The concentration function of a random variable X is defined as Qx(h) sup P(x≤x≤x+h), h>0. = x (a) Show that Qx+b(h) = Qx(h).arrow_forward
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillElementary AlgebraAlgebraISBN:9780998625713Author:Lynn Marecek, MaryAnne Anthony-SmithPublisher:OpenStax - Rice UniversityAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
- College AlgebraAlgebraISBN:9781305115545Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningCollege Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage LearningFunctions and Change: A Modeling Approach to Coll...AlgebraISBN:9781337111348Author:Bruce Crauder, Benny Evans, Alan NoellPublisher:Cengage Learning