
Concept explainers
(a)
The additional horse power required by a passenger vehicle on the curve.

Answer to Problem 15P
Explanation of Solution
Given information:
Speed
Weight of car
Cross sectional area of car
Radius of the curve
Concept used:
The curve resistance is calculated when the road surface has a horizontal curve. Then the power is calculated using the curve resistance force.
Calculation:
The power of the passenger vehicle is determined by
Conclusion:
Therefore, the additional horsepower developed by a passenger vehicle on the curve is
(b)
The total resistance force developed on the vehicle.

Answer to Problem 15P
Explanation of Solution
Given information:
Speed
Weight of car
Cross sectional area of car
Radius of the curve
Concept used:
The total resistance is the sum of air resistance, rolling resistance and curve resistance of the passenger vehicle.
Calculation:
Take aerodynamic drag coefficient for passenger car as
Rolling resistance force is calculated as
Curve resistance force is calculated as
The total resistance force is calculated as
Conclusion:
The total resistance force on the vehicleis
(c)
The total horse power developed by the vehicle.

Answer to Problem 15P
Explanation of Solution
Given information:
Speed
Weight of car
Cross sectional area of car
Radius of the curve
Concept used:
The total resistance is the sum of air resistance, rolling resistance and curve resistance of the passenger car. Using the total resistance the power of the passenger vehicle is calculated. The power is calculated individually for the straight road surface and for the curve surface. Finally the total power is determined by adding both the powers.
Calculation:
Take aerodynamic drag coefficient for passenger car as
Rolling resistance force is calculated as
Curve resistance force is calculated as
The total horse power is calculated as
Conclusion:
The total horsepower is
Want to see more full solutions like this?
Chapter 3 Solutions
Traffic And Highway Engineering
- Compute the nominal shear strength of an M12 × 11.8 of A572 Grade 60 steel (Fy = 60 ksi). For M12 x 11.8: d = 12 in., tw = 0.177 in., h/tw = 62.5. Vn = kipsarrow_forwardA flexural member is fabricated from two flange plates 1/2 × 71/2 and a web plate 3/8 × 19. The yield stress of the steel is 50 ksi. a. Compute the plastic section modulus Z and the plastic moment Mp with respect to the major principal axis. (Express your answers to three significant figures.) Z = Mp = in. 3 ft-kips b. Compute the elastic section modulus S and the yield moment My with respect to the major principal axis. (Express your answers to three significant figures.) S = My = in.3 ft-kipsarrow_forward= 65 ksi. A W16×36 of A992 steel has two holes in each flange for 7/8-inch-diameter bolts. For A992 steel: Fy = 50 ksi, Fu For a W16×36: bƒ = 6.99 in., tƒ = 0.430 in., Z = 64.0 in.³ and Sx = 56.5 in.³ a. Assuming continuous lateral support, verify that the holes must be accounted for and determine the nominal flexural strength. (Express your answer to three significant figures.) Mn = ft-kips b. What is the percent reduction in strength? (Express your answer to three significant figures.) Reduction = %arrow_forward
- Find the reinforcements for the mid span and supports for an interior 9 in. thick slab (S-2) in thefloor from Problem 1. Ignore the beams and assume that the slab is supported by columns only (i.e.a flat plate). Sketch the slab and show the reinforcements including the shrinkage andtemperature reinforcement steel. Use f c’ = 4,000 psi and f y = 60,000 psi.NOTE: Problem 3 requires additional column placements at locations such as C and D. The stripof slab between these two columns will behave as a beam support to the one-way slab (with 10 ft.span). Problem 1. The figures below shows the framing plan and section of a reinforced concrete floor system.Floor beams are shown as dotted lines. The weight of the ceiling and floor finishing is 6 psf,that of the mechanical and electrical systems is 7 psf, and the weight of the partitions is 180psf. The floor live load is 105 psf. The 7 in. thick slab exterior bay (S-1) is reinforced with #5rebars @ 10 in. o.c. as the main positive…arrow_forward1- A study of freeway flow at a particular site has resulted in a calibrated speed-density relationship, as follows u = 57.5(10.008k) a) Find the free-flow speed and jam density b) Derive the equations describing flow versus speed and flow versus density c) Determine the capacity of the road 2- A rural freeway has a demand volume of 6750 v/hr. It has four 3.4 m lanes in each direction. The traffic stream is comprised of 8% heavy vehicles and a PHF of 0.94. The terrain is rolling throughout the segment. What is the level of service for the facility? What is the capacity? 3- For an urban freeway, how many 3.6 m lanes in each direction are needed to achieve LOS C on a freeway with a peak hour traffic volume of 5725 v/hr and with a PHF = 0.967 The traffic stream is comprised of 11% heavy vehicles and the location is level terrain.arrow_forwardNote: Provide a clear, step-by-step simplified handwritten solution (with no extra explanations) that is entirely produced by hand without any AI help. I require an expert-level answer, and I will assess it based on the quality and accuracy of the work, referring to the attached image for additional guidance. Make sure every detail is carefully verified for correctness before you submit. Thanks!.arrow_forward
- 3. Find the reinforcements for the mid span and supports for an interior 8 in. thick slab (S-2) in the floor from Problem 1. Ignore the beams and assume that the slab is supported by columns only. Sketch the slab and show the reinforcements including the shrinkage and temperature reinforcement steel. Use fc’ = 4,000 psi and fy = 60,000 psi.arrow_forwardProblem 4 (Apx Method) Determine (approximately) the force in each member of the truss. Assume the diagonals can support both tensile and compressive forces. 3 m 50 kN F 000 40 kN 000 000 000 000 000 000 E 000 000 000 000 000 B 3 m 20 kN D 000 000 000 000 C 3 m Problem 5 (Apx Method) Determine (approximately) the force in each member of the truss in problem 4. Assume the diagonals cannot support compressive forces.arrow_forwardThe single degree of freedom (SDOF) system the acceleration at the base (excitation) and the acceleration at the roof (response) of the SDOF system was recorded with sampling rate 50 Hz (50 samples per second, or dt= 0.02 seconds). The file ElCentro.txt includes the two columns of acceleration data. The first column lists the acceleration at the base of the SDOF system. The second column lists the acceleration at the roof of the SDOF system. (a) Plot the time histories of the recorded accelerations at the base and at the roof of the SDOF system. (b) Compute the acceleration, velocity and displacement time histories of the roof of the SDOF system subjected to the recorded base acceleration using the Central Difference method. Plot the accel- eration, velocity and displacement time histories. Plot the restoring force, the damping force, and the inertia force time histories. Compare the recorded acceleration time history at the roof of the SDOF with the acceleration that you computed…arrow_forward
- Traffic and Highway EngineeringCivil EngineeringISBN:9781305156241Author:Garber, Nicholas J.Publisher:Cengage LearningConstruction Materials, Methods and Techniques (M...Civil EngineeringISBN:9781305086272Author:William P. Spence, Eva KultermannPublisher:Cengage Learning
- Engineering Fundamentals: An Introduction to Engi...Civil EngineeringISBN:9781305084766Author:Saeed MoaveniPublisher:Cengage Learning



