
Concept explainers
Create a Table that shows wrench size in metric and U.S. units.

Explanation of Solution
Calculation:
Consider the general U.S. standard wrench sizes in ‘in.’:
The sizes are listed below which are normally used in U.S.
The calculation for wrench size in metric and U.S. units are shown below:
For the wrench size
Convert the wrench size from inch to mm,
Convert the wrench size from inch to foot as,
For the wrench size
Convert the wrench size from inch to mm,
Convert the wrench size from inch to foot as,
For the wrench size
Convert the wrench size from inch to mm,
Convert the wrench size from inch to foot as,
For the wrench size
Convert the wrench size from inch to mm,
Convert the wrench size from inch to foot as,
For the wrench size
Convert the wrench size from inch to mm,
Convert the wrench size from inch to foot as,
For the wrench size
Convert the wrench size from inch to mm,
Convert the wrench size from inch to foot as,
For the wrench size
Convert the wrench size from inch to mm,
Convert the wrench size from inch to foot as,
For the wrench size
Convert the wrench size from inch to mm
Convert the wrench size from inch to foot
For the wrench size
Convert the wrench size from inch to mm,
Convert the wrench size from inch to foot as,
For the wrench size
Convert the wrench size from inch to mm
Convert the wrench size from inch to foot
For the wrench size
Convert the wrench size from inch to mm
Convert the wrench size from inch to foot
For the wrench size
Convert the wrench size from inch to mm
Convert the wrench size from inch to foot as,
For the wrench size
Convert the wrench size from inch to mm,
Convert the wrench size from inch to foot as,
For wrench size
Convert the wrench size from inch to mm
Convert the wrench size from inch to foot
Tthe calculated wrench sizes in metric and U.S. units are tabulated in Table 1.
Table 1
U.S. standard wrench sizes (in.) | Metric (mm) | U.S. units (ft) |
1/4" | 6.35 | 0.0208 |
5/16" | 7.937 | 0.026 |
7/16" | 11.11 | 0.036 |
1/2" | 12.7 | 0.042 |
9/16" | 14.28 | 0.046 |
5/8" | 15.87 | 0.052 |
3/4" | 19.05 | 0.062 |
13/16" | 20.63 | 0.067 |
15/16" | 23.81 | 0.078 |
1-1/8" | 28.57 | 0.093 |
1-5/16" | 33.33 | 0.109 |
1-1/2" | 38.1 | 0.124 |
1-11/16" | 42.86 | 0.14 |
1-7/8" | 47.62 | 0.156 |
Conclusion:
Thus, the standard wrench sizes in metric and U.S. units are calculated and tabulated in Table 1.
Want to see more full solutions like this?
Chapter 3 Solutions
Engineering Fundamentals: An Introduction to Engineering (MindTap Course List)
- What is the budgeted unit work hours, in work hours per unit for the concrete walls?arrow_forwardWhat are the total earned work hours at completion for the column forms?arrow_forward6000 units have been installed to date with 9,000 units to install. Labor costs are $23,300.00 to date. What is the unit cost for labor to date?arrow_forward
- The base rate for labor is $15/hr. The labor burden is 35% and 3% for small tools for the labor. There are 1000 units to install. Records indicate that trade workers can install 10 units per hour, per trade worker. The owners need 15% overhead and profit to pay bills, pay interest on loan and provide some profit to the partners. What is the minimum bid assuming no risk avoidance factor?arrow_forwardCan you show me how to obtain these answers thanks, will rate!arrow_forwardI have the answers for part a just need help with b mostly thanksarrow_forward
- Please explain step by step and show formulasarrow_forward5. (20 Points) Consider a channel width change in the same 7-foot wide rectangular in Problem 4. The horizontal channel narrows as depicted below. The flow rate is 90 cfs, and the energy loss (headloss) through the transition is 0.05 feet. The water depth at the entrance to the transition is initially 4'. 1 b₁ TOTAL ENERGY LINE V² 129 У1 I b₂ TOP VIEW 2 PROFILE VIEW h₁ = 0.05 EGL Y₂ = ? a) b) c) 2 Determine the width, b₂ that will cause a choke at location 2. Determine the water depth at the downstream end of the channel transition (y₂) section if b₂ = 5 feet. Calculate the change in water level after the transition. Plot the specific energy diagram showing all key points. Provide printout in homework. d) What will occur if b₂ = = 1.5 ft.?arrow_forward4. (20 Points) A transition section has been proposed to raise the bed level a height Dz in a 7-foot wide rectangular channel. The design flow rate in the channel is 90 cfs, and the energy loss (headloss) through the transition is 0.05 feet. The water depth at the entrance to the transition section is initially 4 feet. b₁ = b = b2 1 TOTAL ENERGY LINE V² 129 Ут TOP VIEW 2 hloss = 0.05 " EGL Y₂ = ? PROFILE VIEW a) Determine the minimum bed level rise, Dz, which will choke the flow. b) If the step height, Dz = 1 ft, determine the water depth (y2) at the downstream end of the channel transition section. Calculate the amount the water level drops or rises over the step. c) Plot the specific energy diagram showing all key points. Provide printout in Bework. d) What will occur if Dz = 3.0 ft.?. Crest Front Viewarrow_forward
- 1. (20 Points) Determine the critical depth in the trapezoidal drainage ditch shown below. The slope of the ditch is 0.0016, the side slopes are 1V:2.5H, the bottom width is b = 14', and the design discharge is 500 cfs. At this discharge the depth is y = 4.25'. Also, determine the flow regime and calculate the Froude number. Ye= ? Z barrow_forward3. (20 Points) A broad crested weir, 10 feet high, will be constructed in a rectangular channel B feet wide. The weir crest extends a length of B = 120 feet between the banks with 2 - 4 foot wide, round nosed piers in the channel. The width of the weir crest is 8 feet. If H = 6', determine the design discharge for the weir.arrow_forwardParking Needs vs. Alternative Transportation Methods for presentation slides include images and graphsarrow_forward
- Engineering Fundamentals: An Introduction to Engi...Civil EngineeringISBN:9781305084766Author:Saeed MoaveniPublisher:Cengage LearningArchitectural Drafting and Design (MindTap Course...Civil EngineeringISBN:9781285165738Author:Alan Jefferis, David A. Madsen, David P. MadsenPublisher:Cengage LearningConstruction Materials, Methods and Techniques (M...Civil EngineeringISBN:9781305086272Author:William P. Spence, Eva KultermannPublisher:Cengage Learning
- Fundamentals Of Construction EstimatingCivil EngineeringISBN:9781337399395Author:Pratt, David J.Publisher:Cengage,Residential Construction Academy: House Wiring (M...Civil EngineeringISBN:9781285852225Author:Gregory W FletcherPublisher:Cengage LearningMaterials Science And Engineering PropertiesCivil EngineeringISBN:9781111988609Author:Charles GilmorePublisher:Cengage Learning





