
(a)
Interpretation: The formula of the binary compound formed from the given pairs of elements in each case is to be stated.
Concept introduction: The oxidation state of an element corresponds to the group number of that element. In case of non-metals, the oxidation state can be calculated as,
To determine: The formula of of sulfur difluoride
(a)

Explanation of Solution
Sulfur belongs to the Group
Fluorine is a non-metal of the
Oxidation state
In
The formula of ionic compound is given such that positive ion (cation) always written first and negative ion written second.
(b)
Interpretation: The formula of the binary compound formed from the given pairs of elements in each case is to be stated.
Concept introduction: The oxidation state of an element corresponds to the group number of that element. In case of non-metals, the oxidation state can be calculated as,
To determine: The formula of sulfur hexafluoride
(b)

Explanation of Solution
Sulfur belongs to the Group
Fluorine is a non-metal of the
Oxidation state
In
The formula of ionic compound is given such that positive ion (cation) always written first and negative ion written second.
(c)
Interpretation: The formula of the binary compound formed from the given pairs of elements in each case is to be stated.
Concept introduction: The oxidation state of an element corresponds to the group number of that element. In case of non-metals, the oxidation state can be calculated as,
To determine: The formula of
(c)

Explanation of Solution
Sodium belongs to the Group
Dihydrogen phosphate is an anion having oxidation state
So, the formula of the given compound is
The formula of ionic compound is given such that positive ion (cation) always written first and negative ion written second.
(d)
Interpretation: The formula of the binary compound formed from the given pairs of elements in each case is to be stated.
Concept introduction: The oxidation state of an element corresponds to the group number of that element. In case of non-metals, the oxidation state can be calculated as,
To determine: The formula of lithium nitride
(d)

Explanation of Solution
Lithium belongs to the Group
Nitrogen is a non-metal of the
Oxidation state
So, the formula of the given compound is
The formula of ionic compound is given such that positive ion (cation) always written first and negative ion written second.
(e)
Interpretation: The formula of the binary compound formed from the given pairs of elements in each case is to be stated.
Concept introduction: The oxidation state of an element corresponds to the group number of that element. In case of non-metals, the oxidation state can be calculated as,
To determine: The formula of chromium (III) carbonate.
(e)

Explanation of Solution
Chromium belongs to the Group
Carbonate is an anion having oxidation state
So, the formula of the given compound is
The formula of ionic compound is given such that positive ion (cation) always written first and negative ion written second.
(f)
Interpretation: The formula of the binary compound formed from the given pairs of elements in each case is to be stated.
Concept introduction: The oxidation state of an element corresponds to the group number of that element. In case of non-metals, the oxidation state can be calculated as,
To determine: The formula of tin (II) fluoride.
(f)

Explanation of Solution
Tin belongs to the Group
Fluorine is a non-metal of the
Oxidation state
So, the formula of the given compound is
The formula of ionic compound is given such that positive ion (cation) always written first and negative ion written second.
(g)
Interpretation: The formula of the binary compound formed from the given pairs of elements in each case is to be stated.
Concept introduction: The oxidation state of an element corresponds to the group number of that element. In case of non-metals, the oxidation state can be calculated as,
To determine: The formula of ammonium acetate.
(g)

Explanation of Solution
The oxidation state of ammonium
Acetate
So, the formula of the given compound is
The formula of ionic compound is given such that positive ion (cation) always written first and negative ion written second.
(h)
Interpretation: The formula of the binary compound formed from the given pairs of elements in each case is to be stated.
Concept introduction: The oxidation state of an element corresponds to the group number of that element. In case of non-metals, the oxidation state can be calculated as,
To determine: The formula of ammonium hydrogen sulfate.
(h)

Explanation of Solution
The oxidation state of ammonium
Hydrogen sulfate
So, the formula of the given compound is
The formula of ionic compound is given such that positive ion (cation) always written first and negative ion written second.
(i)
Interpretation: The formula of the binary compound formed from the given pairs of elements in each case is to be stated.
Concept introduction: The oxidation state of an element corresponds to the group number of that element. In case of non-metals, the oxidation state can be calculated as,
To determine: The formula of cobalt (III) nitrate.
(i)

Explanation of Solution
The oxidation state of cobalt
Nitrate
So, the formula of the given compound is
The formula of ionic compound is given such that positive ion (cation) always written first and negative ion written second.
(j)
Interpretation: The formula of the binary compound formed from the given pairs of elements in each case is to be stated.
Concept introduction: The oxidation state of an element corresponds to the group number of that element. In case of non-metals, the oxidation state can be calculated as,
To determine: The formula of mercury (I) chloride.
(j)

Explanation of Solution
The oxidation state of mercury
Chloride
Two mercury and chlorine ions is joined to form mercury (I) chloride.
So, the formula of the given compound is
The formula of ionic compound is given such that positive ion (cation) always written first and negative ion written second.
(k)
Interpretation: The formula of the binary compound formed from the given pairs of elements in each case is to be stated.
Concept introduction: The oxidation state of an element corresponds to the group number of that element. In case of non-metals, the oxidation state can be calculated as,
To determine: The formula of potassium chlorate.
(k)

Explanation of Solution
The oxidation state of potassium
Chlorate
So, the formula of the given compound is
The formula of ionic compound is given such that positive ion (cation) always written first and negative ion written second.
(l)
Interpretation: The formula of the binary compound formed from the given pairs of elements in each case is to be stated.
Concept introduction: The oxidation state of an element corresponds to the group number of that element. In case of non-metals, the oxidation state can be calculated as,
To determine: The formula of sodium hydride.
(l)

Explanation of Solution
The oxidation state of sodium
Hydride
So, the formula of the given compound is
The formula of ionic compound is given such that positive ion (cation) always written first and negative ion written second.
Want to see more full solutions like this?
Chapter 3 Solutions
Bundle: Chemistry: An Atoms First Approach, 2nd, Loose-Leaf + OWLv2, 4 terms (24 months) Printed Access Card
- Draw a mechanism for the following synthetic transformation including reagents and any isolable intermediates throughout the process. Please clearly indicate bond cleavage/formation using curly arrows. MeO2Carrow_forwardCHEM 310 Quiz 8 Organic Chemistry II Due: Tuesday, April 25th, at 11:59 pm. This quiz is open textbook / open notes - but you must work alone. You cannot use the internet or the solutions manual for the book. Scan in your work and record an explanation of your mechanism. You may record this any way that you like. One way would be to start an individual Zoom meeting, start recording, "share your screen" and then talk through the problem. This will be converted to an .mp4 file that you can upload into Canvas using the "record/upload media" feature. Pyridine, benzoic acid and benzene are dissolved in ethyl acetate. Design and provide a plan / flow chart for separating and isolating each of these components. Pyridine and benzene are liquids at room temperature. Benzoic acid is a solid. You have ethyl acetate, 2M NaOH, 2M HCI and anhydrous MgSO4 available, as well as all the glassware and equipment that you used in the organic lab this year. Provide accurate acid/base reactions for any…arrow_forwardCan anyone help me solve this step by step. Thank you in advaarrow_forward
- Please draw the mechanism for this Friedel-crafts acylation reaction using arrowsarrow_forwardDraw the Fischer projection of D-fructose. Click and drag to start drawing a structure. Skip Part Check AP 14 tv SC F1 F2 80 F3 a F4 ! 2 # 3 CF F5 75 Ax MacBook Air 894 $ 5olo % Λ 6 > W F6 K F7 &arrow_forwardConsider this step in a radical reaction: Y What type of step is this? Check all that apply. Draw the products of the step on the right-hand side of the drawing area below. If more than one set of products is possible, draw any set. Also, draw the mechanism arrows on the left-hand side of the drawing area to show how this happens. ionization propagation initialization passivation none of the abovearrow_forward
- Living By Chemistry: First Edition TextbookChemistryISBN:9781559539418Author:Angelica StacyPublisher:MAC HIGHERIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- World of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage Learning



