Concept explainers
Balance each of the following chemical equations.
a. KO2(s) + H2O(l) ⟶ KOH(aq) + O2(g) + H2O2(aq)
b. Fe2O3(s) + HNO3(aq) ⟶ Fe(NO3)(aq) + H2O(l)
c. NH3(g) + O2(g) ⟶ NO(g) + H2O (g)
d. PCl5(l) + H2O(l) ⟶ H3PO4(aq) + HCl(g)
e. CaO(s) + C(s) ⟶ CaC2(s) + CO2 (g)
f. MoS2(s) + O2(g) ⟶ MoO3(s) + SO2 (g)
g. FeCO3(s) + H2CO3(aq) ⟶ Fe(HCO3)2(aq)
(a)

Interpretation: A balanced form of the given chemical equations is to be stated.
Concept introduction: According to the law of conservation of mass, mass can neither be created nor destroyed. The mass of reactants is equal to the mass of products formed during a chemical process.
To determine: A balanced form of the given chemical equation.
Explanation of Solution
According to the law of conservation of mass, mass can neither be created nor destroyed. The mass of reactants is equal to the mass of products formed. Therefore a chemical equation, having lesser number of moles of an element on either side of a reaction, is balanced using appropriate numerical coefficients to satisfy the law of conservation of mass.
The given reaction is,
Adding the coefficient
Adding the coefficient
The balanced chemical equation is,
(b)

Interpretation: A balanced form of the given chemical equations is to be stated.
Concept introduction: According to the law of conservation of mass, mass can neither be created nor destroyed. The mass of reactants is equal to the mass of products formed during a chemical process.
To determine: A balanced form of the given chemical equation.
Explanation of Solution
According to the law of conservation of mass, mass can neither be created nor destroyed. The mass of reactants is equal to the mass of products formed. Therefore a chemical equation, having lesser number of moles of an element on either side of a reaction, is balanced using appropriate numerical coefficients to satisfy the law of conservation of mass.
The given reaction is,
Adding the coefficient
Adding the coefficient
The balanced chemical equation is,
(c)

Interpretation: A balanced form of the given chemical equations is to be stated.
Concept introduction: According to the law of conservation of mass, mass can neither be created nor destroyed. The mass of reactants is equal to the mass of products formed during a chemical process.
To determine: A balanced form of the given chemical equation.
Explanation of Solution
According to the law of conservation of mass, mass can neither be created nor destroyed. The mass of reactants is equal to the mass of products formed. Therefore a chemical equation, having lesser number of moles of an element on either side of a reaction, is balanced using appropriate numerical coefficients to satisfy the law of conservation of mass.
The given reaction is,
Adding the coefficient
Adding the coefficient
The balanced chemical equation is
(d)

Interpretation: A balanced form of the given chemical equations is to be stated.
Concept introduction: According to the law of conservation of mass, mass can neither be created nor destroyed. The mass of reactants is equal to the mass of products formed during a chemical process.
To determine: A balanced form of the given chemical equation.
Explanation of Solution
According to the law of conservation of mass, mass can neither be created nor destroyed. The mass of reactants is equal to the mass of products formed. Therefore a chemical equation, having lesser number of moles of an element on either side of a reaction, is balanced using appropriate numerical coefficients to satisfy the law of conservation of mass.
The given reaction is,
Adding the coefficient
Adding the coefficient
The balanced chemical equation is
(e)

Interpretation: A balanced form of the given chemical equations is to be stated.
Concept introduction: According to the law of conservation of mass, mass can neither be created nor destroyed. The mass of reactants is equal to the mass of products formed during a chemical process.
To determine: A balanced form of the given chemical equation.
Explanation of Solution
According to the law of conservation of mass, mass can neither be created nor destroyed. The mass of reactants is equal to the mass of products formed. Therefore a chemical equation, having lesser number of moles of an element on either side of a reaction, is balanced using appropriate numerical coefficients to satisfy the law of conservation of mass.
The given reaction is,
Adding the coefficient
Adding the coefficient
The balanced chemical equation is
(f)

Interpretation: A balanced form of the given chemical equations is to be stated.
Concept introduction: According to the law of conservation of mass, mass can neither be created nor destroyed. The mass of reactants is equal to the mass of products formed during a chemical process.
To determine: A balanced form of the given chemical equation.
Explanation of Solution
According to the law of conservation of mass, mass can neither be created nor destroyed. The mass of reactants is equal to the mass of products formed. Therefore a chemical equation, having lesser number of moles of an element on either side of a reaction, is balanced using appropriate numerical coefficients to satisfy the law of conservation of mass.
The given reaction is,
Adding the coefficient
Adding the coefficient
The balanced chemical equation is
(g)

Interpretation: A balanced form of the given chemical equations is to be stated.
Concept introduction: According to the law of conservation of mass, mass can neither be created nor destroyed. The mass of reactants is equal to the mass of products formed during a chemical process.
To determine: A balanced form of the given chemical equation.
Explanation of Solution
According to the law of conservation of mass, mass can neither be created nor destroyed. The mass of reactants is equal to the mass of products formed. Therefore a chemical equation, having lesser number of moles of an element on either side of a reaction, is balanced using appropriate numerical coefficients to satisfy the law of conservation of mass.
The given reaction is,
The given reaction is already present in its balanced form.
The balanced chemical equation is
Want to see more full solutions like this?
Chapter 3 Solutions
WebAssign for Zumdahl/Zumdahl/DeCoste's Chemistry, 10th Edition [Instant Access], Single-Term
- * Hint: Think back to Chem 1 solubility rules. Follow Up Questions for Part B 12. What impact do the following disturbances to a system at equilibrium have on k, the rate constant for the forward reaction? Explain. (4 pts) a) Changing the concentration of a reactant or product. (2 pts) b) Changing the temperature of an exothermic reaction. (2 pts) ofarrow_forwardDraw TWO general chemical equation to prepare Symmetrical and non-Symmetrical ethers Draw 1 chemical reaction of an etherarrow_forwardPlease help me with the following questions for chemistry.arrow_forward
- + C8H16O2 (Fatty acid) + 11 02 → 8 CO2 a. Which of the above are the reactants? b. Which of the above are the products? H2o CO₂ c. Which reactant is the electron donor? Futty acid d. Which reactant is the electron acceptor? e. Which of the product is now reduced? f. Which of the products is now oxidized? 02 #20 102 8 H₂O g. Where was the carbon initially in this chemical reaction and where is it now that it is finished? 2 h. Where were the electrons initially in this chemical reaction and where is it now that it is finished?arrow_forward→ Acetyl-CoA + 3NAD+ + 1FAD + 1ADP 2CO2 + CoA + 3NADH + 1FADH2 + 1ATP a. Which of the above are the reactants? b. Which of the above are the products? c. Which reactant is the electron donor? d. Which reactants are the electron acceptors? e. Which of the products are now reduced? f. Which product is now oxidized? g. Which process was used to produce the ATP? h. Where was the energy initially in this chemical reaction and where is it now that it is finished? i. Where was the carbon initially in this chemical reaction and where is it now that it is finished? j. Where were the electrons initially in this chemical reaction and where is it now that it is finished?arrow_forwardRank each of the following substituted benzene molecules in order of which will react fastest (1) to slowest (4) by electrophilic aromatic substitution. OCH 3 (Choose one) OH (Choose one) Br (Choose one) Explanation Check NO2 (Choose one) © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Aarrow_forward
- For each of the substituted benzene molecules below, determine the inductive and resonance effects the substituent will have on the benzene ring, as well as the overall electron-density of the ring compared to unsubstituted benzene. Molecule Inductive Effects O donating O withdrawing O no inductive effects Resonance Effects Overall Electron-Density ○ donating ○ withdrawing O no resonance effects O electron-rich O electron-deficient O similar to benzene Cl O donating O withdrawing ○ donating ○ withdrawing O no inductive effects O no resonance effects O Explanation Check O electron-rich O electron-deficient similar to benzene X © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Accessarrow_forwardIdentifying electron-donating and For each of the substituted benzene molecules below, determine the inductive and resonance effects the substituent will have on the benzene ring, as well as the overall electron-density of the ring compared to unsubstituted benzene. Molecule Inductive Effects NH2 ○ donating NO2 Explanation Check withdrawing no inductive effects Resonance Effects Overall Electron-Density ○ donating O withdrawing O no resonance effects O donating O withdrawing O donating withdrawing O no inductive effects Ono resonance effects O electron-rich electron-deficient O similar to benzene O electron-rich O electron-deficient O similar to benzene olo 18 Ar 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Accessibilityarrow_forwardRank each of the following substituted benzene molecules in order of which will react fastest (1) to slowest (4) by electrophilic aromatic substitution. Explanation Check Х (Choose one) OH (Choose one) OCH3 (Choose one) OH (Choose one) © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Centerarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning





