
Concept explainers
Draw electron-dot structures for the following molecules, indicating any unshared electron pairs. Which of the compounds are likely to act as Lewis acids and which as Lewis bases?
(a) AlBr3
(b) CH3CH2NH2
(c) BH3
(d) HF
(e) CH3SCH3
(f) TiCl4

a) AlBr3
Interpretation:
Electron dot structure for AlBr3 indicating any unshared electron pairs is to be drawn. Whether it will act as Lewis acid or Lewis base is also to be stated.
Concept introduction:
A covalent bond formed by sharing of two electrons between two atoms in a molecule is usually indicated by electron-dot structures in which valence electrons are represented as dots. Thus aluminum has three dots to represent its 3s23p1electrons, bromine has seven dots to represent its 4s24p5 electrons. A stable molecule results whenever all the atoms except hydrogen in a molecule achieve in their valence shell eight dots and hydrogen achieve two dots. The electrons present in the inner shells of the atoms are not shown.
Lewis acids are electron pair acceptors while Lewis bases are electron pair donors.
To give:
The electron dot structure for AlBr3 indicating any unshared electron pairs and to state whether it will act as Lewis acid or Lewis base.
Answer to Problem 42AP
The electron–dot structure for AlBr3 indicating any unshared electron pairs can be given as
It will act as a Lewis acid.
Explanation of Solution
Aluminum atom has three electrons (3s23p1) in its valence shell. It has used all the three electrons in forming three Al- Br bonds. So it has no lone pair of electrons. The bromine atom has seven electrons in its valence shell (4s24p5). Out of these seven electrons, each bromine has used one electron for forming Al-Br bond and thus has the remaining six electrons as three lone pairs. AlBr3 will act as Lewis acid since the central aluminum atom requires two more electrons to complete its octet.
The electron–dot structure for AlBr3 indicating any unshared electron pairs can be given as
It will act as a Lewis acid.

b) CH3CH2NH2
Interpretation:
Electron dot structure for CH3CH2NH2 indicating any unshared electron pairs is to be drawn. Whether it will act as Lewis acid or Lewis base is also to be stated.
Concept introduction:
A covalent bond formed by sharing of two electrons between two atoms in a molecule is usually indicated by electron-dot structures in which valence electrons are represented as dots. Thus hydrogen has one dot to represent its 1s1 electron, carbon has four dots to represent its 2s22p2 electrons, and nitrogen has five dots to represent its 2s22p3 electrons. A stable molecule results whenever all the atoms except hydrogen in a molecule achieve in their valence shell eight dots and hydrogen achieve two dots. The electrons present in the inner shells of the atoms are not shown.
Lewis acids are electron pair acceptors while Lewis bases are electron pair donors.
To give:
The electron dot structure for CH3CH2NH2 indicating any unshared electron pairs and to state whether it will act as Lewis acid or Lewis base.
Answer to Problem 42AP
The electron–dot structure for CH3CH2NH2 indicating any unshared electron pairs can be given as,
It will act as a Lewis base.
Explanation of Solution
Carbon atom has four electrons (2s22p2) in its valence shell. Both carbons have used all the four electrons in forming four bonds with other atoms. So they do not possess any lone pair of electrons. The nitrogen atom has five electrons in its valence shell (2s22p3). Out of these five electrons, nitrogen has used three electrons for forming one C-N and two N-H bonds and thus has the remaining two electrons as a lone pair. CH3CH2NH2 will act as Lewis base since the nitrogen atom can donate a pair of electrons to other species.
The electron–dot structure for CH3CH2NH2 indicating any unshared electron pairs can be given as,
It will act as a Lewis base.

c) BH3
Interpretation:
Electron dot structure for BH3 indicating any unshared electron pairs is to be drawn. Whether it will act as Lewis acid or Lewis base is also to be stated.
Concept introduction:
A covalent bond formed by sharing of two electrons between two atoms in a molecule is usually indicated by electron-dot structures in which valence electrons are represented as dots. Thus boron has three dots to represent its 2s22p1electrons, hydrogen has one dot to represent its 1s1 electron. A stable molecule results whenever all the atoms except hydrogen in a molecule achieve in their valence shell eight dots and hydrogen achieve two dots. The electrons present in the inner shells of the atoms are not shown.
Lewis acids are electron pair acceptors while Lewis bases are electron pair donors.
To give:
The electron dot structure for BH3 indicating any unshared electron pairs and to state whether it will act as Lewis acid or Lewis base.
Answer to Problem 42AP
The electron–dot structure for BH3 indicating any unshared electron pairs can be given as,
It will act as a Lewis acid.
Explanation of Solution
Boron atom has three electrons (2s22p1) in its valence shell. It has used all the three electrons in forming three B- H bonds. So it has no lone pair of electrons. Each hydrogen atom has one electron in its valence shell (1s1) which they utilize in forming the B-H bonds. BH3 will act as Lewis acid since the central boron atom requires two more electrons to complete its octet.
The electron–dot structure for BH3 indicating any unshared electron pairs can be given as,
It will act as a Lewis acid.

d) HF
Interpretation:
Electron dot structure for HF indicating any unshared electron pairs is to be drawn. Whether it will act as Lewis acid or Lewis base is also to be stated.
Concept introduction:
A covalent bond formed by sharing of two electrons between two atoms in a molecule is usually indicated by electron-dot structures in which valence electrons are represented as dots. Thus fluorine has seven dots to represent its 2s22p5 electrons, hydrogen has one dot to represent its 1s1 electron. A stable molecule results whenever all the atoms except hydrogen in a molecule achieve in their valence shell eight dots and hydrogen achieve two dots. The electrons present in the inner shells of the atoms are not shown.
Lewis acids are electron pair acceptors while Lewis bases are electron pair donors. To give: The electron dot structure for HF indicating any unshared electron pairs and to state whether it will act as Lewis acid or Lewis base.
Answer to Problem 42AP
The electron–dot structure for HF indicating any unshared electron pairs can be given as
It will act as a Lewis acid.
Explanation of Solution
Fluorine atom is the most electronegative element and hence the H-F bond is highly polarized. The electrons in the bond are more concentrated on F rather than on H. The hydrogen is thus electron deficient and it can accept a pair of electrons from a Lewis base. Hence HF is likely to behave as Lewis acid.
The electron–dot structure for HF indicating any unshared electron pairs can be given as
It will act as a Lewis acid.

e) CH3SCH3
Interpretation:
Electron dot structure for CH3SCH3 indicating any unshared electron pairs is to be drawn. Whether it will act as Lewis acid or Lewis base is also to be stated.
Concept introduction:
A covalent bond formed by sharing of two electrons between two atoms in a molecule is usually indicated by electron-dot structures in which valence electrons are represented as dots. Thus hydrogen has one dot to represent its 1s1 electron, carbon has four dots to represent its 2s22p2 electrons and sulfur has six dots to represent its 3s23p4 electrons. A stable molecule results whenever all the atoms except hydrogen in a molecule achieve in their valence shell eight dots and hydrogen achieve two dots. The electrons present in the inner shells of the atoms are not shown.
Lewis acids are electron pair acceptors while Lewis bases are electron pair donors.
To give:
The electron dot structure for CH3SCH3 indicating any unshared electron pairs and to state whether it will act as Lewis acid or Lewis base.
Answer to Problem 42AP
The electron–dot structure for CH3SCH3 indicating any unshared electron pairs can be given as,
It will act as a Lewis base.
Explanation of Solution
Carbon atom has four electrons (2s22p2) in its valence shell. Both carbons have used all the four electrons in forming four bonds with other atoms. So they do not possess any lone pair of electrons. The sulfur atom has six electrons in its valence shell (3s23p4). Out of these six electrons, sulfur has used two electrons for forming two C-S bonds and thus has the remaining four electrons as two lone pairs. CH3SCH3 will act as Lewis base since the sulfur atom can donate a pair of electrons to other species.
The electron–dot structure for CH3SCH3 indicating any unshared electron pairs can be given as,
It will act as a Lewis base.

f) TiCl4
Interpretation:
Electron dot structure for TiCl4 indicating any unshared electron pairs is to be drawn. Whether it will act as Lewis acid or Lewis base is also to be stated.
Concept introduction:
A covalent bond formed by sharing of two electrons between two atoms in a molecule is usually indicated by electron-dot structures in which valence electrons are represented as dots. A stable molecule results whenever all the atoms except hydrogen in a molecule achieve in their valence shell eight dots and hydrogen achieve two dots. The electrons present in the inner shells of the atoms are not shown.
Lewis acids are electron pair acceptors while Lewis bases are electron pair donors.
To give:
The electron dot structure for TiCl4 indicating any unshared electron pairs and to state whether it will act as Lewis acid or Lewis base.
Answer to Problem 42AP
The electron–dot structure for TiCl4 indicating any unshared electron pairs can be given as,
It will act as a Lewis acid.
Explanation of Solution
The chlorine atom has seven electrons in its valence shell (3s23p5). Out of these seven electrons, each chlorine has used one electron for forming Ti-Cl bond and thus have the remaining six electrons as three lone pairs. Titanium is a transition element. Transition elements utilize the d orbitals in the penultimate shell also along with orbitals of the valence shell during bonding. It has the configuration 3d24s2. It has used all the four electrons in forming four Ti-Cl bonds.
The d orbitals can have a maximum of ten electrons. In TiCl4, the titanium atom has empty d orbitals to accommodate electrons donated by a Lewis base. Hence TiCl4 will act as Lewis acid.
The electron–dot structure for TiCl4 indicating any unshared electron pairs can be given as,
It will act as a Lewis acid.
Want to see more full solutions like this?
Chapter 2 Solutions
Organic Chemistry - With Access (Custom)
- What is the IUPAC name of the following compound? CH₂CH₂ H CI H₂CH₂C H CH₂ Selected Answer: O (35,4R)-4 chloro-3-ethylpentane Correctarrow_forwardCurved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electrons-pushing arrows for the following reaction or mechanistic step(s).arrow_forwardCurved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electron-pushing arrows for the following reaction or mechanistic step(s). Be sure to account for all bond-breaking and bond-making steps. I I I H Select to Add Arrows HCI, CH3CH2OHarrow_forward
- Curved arrows are used to illustrate the flow of electrons. Use the reaction conditions provided and the follow the arrows to draw the intermediate and product in this reaction or mechanistic step(s).arrow_forwardCurved arrows are used to illustrate the flow of electrons. Use the reaction conditions provided and follow the curved arrows to draw the intermediates and product of the following reaction or mechanistic step(s).arrow_forwardCurved arrows are used to illustrate the flow of electrons. Use the reaction conditions provided and follow the arrows to draw the intermediate and the product in this reaction or mechanistic step(s).arrow_forward
- Look at the following pairs of structures carefully to identify them as representing a) completely different compounds, b) compounds that are structural isomers of each other, c) compounds that are geometric isomers of each other, d) conformers of the same compound (part of structure rotated around a single bond) or e) the same structure.arrow_forwardGiven 10.0 g of NaOH, what volume of a 0.100 M solution of H2SO4 would be required to exactly react all the NaOH?arrow_forward3.50 g of Li are combined with 3.50 g of N2. What is the maximum mass of Li3N that can be produced? 6 Li + N2 ---> 2 Li3Narrow_forward
- 3.50 g of Li are combined with 3.50 g of N2. What is the maximum mass of Li3N that can be produced? 6 Li + N2 ---> 2 Li3Narrow_forwardConcentration Trial1 Concentration of iodide solution (mA) 255.8 Concentration of thiosulfate solution (mM) 47.0 Concentration of hydrogen peroxide solution (mM) 110.1 Temperature of iodide solution ('C) 25.0 Volume of iodide solution (1) used (mL) 10.0 Volume of thiosulfate solution (5:03) used (mL) Volume of DI water used (mL) Volume of hydrogen peroxide solution (H₂O₂) used (mL) 1.0 2.5 7.5 Time (s) 16.9 Dark blue Observations Initial concentration of iodide in reaction (mA) Initial concentration of thiosulfate in reaction (mA) Initial concentration of hydrogen peroxide in reaction (mA) Initial Rate (mA's)arrow_forwardDraw the condensed or line-angle structure for an alkene with the formula C5H10. Note: Avoid selecting cis-/trans- isomers in this exercise. Draw two additional condensed or line-angle structures for alkenes with the formula C5H10. Record the name of the isomers in Data Table 1. Repeat steps for 2 cyclic isomers of C5H10arrow_forward
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningIntroductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage Learning




