(a)
Interpretation:
The technique used to separate the mixture of table salt and pepper into pure components is to be described.
Concept introduction:
The basic techniques of separation of mixture components are:
Filtration - The method of filtration is used to separate the components of a mixture whose particle sizes are different. Filtration is also used to separate solids from liquids using sieve plates.
Crystallization - The method of crystallization involves the separation of components from a mixture in which the components have a difference in their solubility in a particular solvent. On cooling down the solution, the desired component crystallizes out of the solution.
Distillation - This method involves heating and cooling the mixture with components having large differences in their boiling points. The component with lower boiling point vapourises first. The component vapours are cooled down and collected in separate containers.
Chromatography - This separation technique is based on the difference between the solubilities of the components of a mixture in mobile and stationary phases. The component having greater solubility in the mobile phase is separated and collected first whereas the component with greater solubility in the stationary phase is separated later.
(b)
Interpretation:
The technique used to separate the mixture of drinking water and soot into pure components is to be described.
Concept introduction:
The basic techniques of separation of mixture components are:
Filtration - The method of filtration is used to separate the components of a mixture whose particle sizes are different. Filtration is also used to separate solids from liquids using sieve plates.
Crystallization - The method of crystallization involves the separation of components from a mixture in which the components have a difference in their solubility in a particular solvent. On cooling down the solution, the desired component crystallizes out of the solution.
Distillation - This method involves heating and cooling the mixture with components having large differences in their boiling points. The component with lower boiling point vapourises first. The component vapours are cooled down and collected in separate containers.
Chromatography - This separation technique is based on the difference between the solubilities of the components of a mixture in mobile and stationary phases. The component having greater solubility in the mobile phase is separated and collected first whereas the component with greater solubility in the stationary phase is separated later.
(c)
Interpretation:
The technique used to separate the mixture of crushed ice and crushed glass into pure components is to be described.
Concept introduction:
The basic techniques of separation of mixture components are:
Filtration - The method of filtration is used to separate the components of a mixture whose particle sizes are different. Filtration is also used to separate solids from liquids using sieve plates.
Crystallization - The method of crystallization involves the separation of components from a mixture in which the components have a difference in their solubility in a particular solvent. On cooling down the solution, the desired component crystallizes out of the solution.
Distillation - This method involves heating and cooling the mixture with components having large differences in their boiling points. The component with lower boiling point vapourises first. The component vapours are cooled down and collected in separate containers.
Chromatography - This separation technique is based on the difference between the solubilities of the components of a mixture in mobile and stationary phases. The component having greater solubility in the mobile phase is separated and collected first whereas the component with greater solubility in the stationary phase is separated later.
(d)
Interpretation:
The technique used to separate the mixture of sugar dissolved in ethanol into pure components is to be described.
Concept introduction:
The basic techniques of separation of mixture components are:
Filtration - The method of filtration is used to separate the components of a mixture whose particle sizes are different. Filtration is also used to separate solids from liquids using sieve plates.
Crystallization - The method of crystallization involves the separation of components from a mixture in which the components have a difference in their solubility in a particular solvent. On cooling down the solution, the desired component crystallizes out of the solution.
Distillation - This method involves heating and cooling the mixture with components having large differences in their boiling points. The component with lower boiling point vapourises first. The component vapours are cooled down and collected in separate containers.
Chromatography - This separation technique is based on the difference between the solubilities of the components of a mixture in mobile and stationary phases. The component having greater solubility in the mobile phase is separated and collected first whereas the component with greater solubility in the stationary phase is separated later.
(e)
Interpretation:
The technique used to separate two pigments chlorophyll a and chlorophyll b from spinach leaves is to be described.
Concept introduction:
The basic techniques of separation of mixture components are:
Filtration - The method of filtration is used to separate the components of a mixture whose particle sizes are different. Filtration is also used to separate solids from liquids using sieve plates.
Crystallization - The method of crystallization involves the separation of components from a mixture in which the components have a difference in their solubility in a particular solvent. On cooling down the solution, the desired component crystallizes out of the solution.
Distillation - This method involves heating and cooling the mixture with components having large differences in their boiling points. The component with lower boiling point vapourises first. The component vapours are cooled down and collected in separate containers.
Chromatography - This separation technique is based on the difference between the solubilities of the components of a mixture in mobile and stationary phases. The component having greater solubility in the mobile phase is separated and collected first whereas the component with greater solubility in the stationary phase is separated later.

Want to see the full answer?
Check out a sample textbook solution
Chapter 2 Solutions
CHEM 212:STUDENT SOLUTION MANUAL
- For CARS, which statement is not true regarding its advantages? a) Contrast signal based on vibrational characteristics, no need for fluorescent tagging. b) Stronger signals than spontaneous Raman. c) Suffers from fluorescence interference, because CARS signal is at high frequency. d) Faster, more efficient imaging for real-time analysis. e) Higher resolution than spontaneous Raman microscopy.arrow_forwardDraw the major product of the Claisen condensation reaction between two molecules of this ester. Ignore inorganic byproducts. Incorrect, 5 attempts remaining 1. NaOCH3/CH3OH 2. Acidic workup Select to Draw O Incorrect, 5 attempts remaining The total number of carbons in the parent chain is incorrect. Review the reaction conditions including starting materials and/or intermediate structures and recount the number of carbon atoms in the parent chain of your structure. OKarrow_forwardUsing a cell of known pathlength b = 1.25115 x 10-3 cm, a water absorption spectrum was measured. The band at 1645 cm-1, assigned to the O-H bending, showed an absorbance, A, of 1.40. a) Assuming that water density is 1.00 g/mL, calculate the water molar concentration c (hint: M= mole/L) b) Calculate the molar absorptivity, a, of the 1645 cm-1 band c) The transmitted light, I, can be written as I= Ioexp(-xb), where x is the absorption coefficient (sometimes designated as alpha), Io is the input light, and b is the cell pathlength. Prove that x= (ln10)*x*c d) Calculate x for the 1645 cm-1 bandarrow_forward
- Convert 1.38 eV into wavelength (nm) and wavenumber (cm-1) (c = 2.998 x 108 m/s; h = 6.626 x 10-34 J*s).arrow_forwardCan you help me understand the CBC method on metal bridging by looking at this problem?arrow_forwardA partir de Aluminio y Co(NO3)2ꞏ6H2O, indicar las reacciones a realizar para obtener Azul de Thenard (Al2CoO4).arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





