(a)
Interpretation:
The technique used to separate the mixture of table salt and pepper into pure components is to be described.
Concept introduction:
The basic techniques of separation of mixture components are:
Filtration - The method of filtration is used to separate the components of a mixture whose particle sizes are different. Filtration is also used to separate solids from liquids using sieve plates.
Crystallization - The method of crystallization involves the separation of components from a mixture in which the components have a difference in their solubility in a particular solvent. On cooling down the solution, the desired component crystallizes out of the solution.
Distillation - This method involves heating and cooling the mixture with components having large differences in their boiling points. The component with lower boiling point vapourises first. The component vapours are cooled down and collected in separate containers.
Chromatography - This separation technique is based on the difference between the solubilities of the components of a mixture in mobile and stationary phases. The component having greater solubility in the mobile phase is separated and collected first whereas the component with greater solubility in the stationary phase is separated later.
(b)
Interpretation:
The technique used to separate the mixture of drinking water and soot into pure components is to be described.
Concept introduction:
The basic techniques of separation of mixture components are:
Filtration - The method of filtration is used to separate the components of a mixture whose particle sizes are different. Filtration is also used to separate solids from liquids using sieve plates.
Crystallization - The method of crystallization involves the separation of components from a mixture in which the components have a difference in their solubility in a particular solvent. On cooling down the solution, the desired component crystallizes out of the solution.
Distillation - This method involves heating and cooling the mixture with components having large differences in their boiling points. The component with lower boiling point vapourises first. The component vapours are cooled down and collected in separate containers.
Chromatography - This separation technique is based on the difference between the solubilities of the components of a mixture in mobile and stationary phases. The component having greater solubility in the mobile phase is separated and collected first whereas the component with greater solubility in the stationary phase is separated later.
(c)
Interpretation:
The technique used to separate the mixture of crushed ice and crushed glass into pure components is to be described.
Concept introduction:
The basic techniques of separation of mixture components are:
Filtration - The method of filtration is used to separate the components of a mixture whose particle sizes are different. Filtration is also used to separate solids from liquids using sieve plates.
Crystallization - The method of crystallization involves the separation of components from a mixture in which the components have a difference in their solubility in a particular solvent. On cooling down the solution, the desired component crystallizes out of the solution.
Distillation - This method involves heating and cooling the mixture with components having large differences in their boiling points. The component with lower boiling point vapourises first. The component vapours are cooled down and collected in separate containers.
Chromatography - This separation technique is based on the difference between the solubilities of the components of a mixture in mobile and stationary phases. The component having greater solubility in the mobile phase is separated and collected first whereas the component with greater solubility in the stationary phase is separated later.
(d)
Interpretation:
The technique used to separate the mixture of sugar dissolved in ethanol into pure components is to be described.
Concept introduction:
The basic techniques of separation of mixture components are:
Filtration - The method of filtration is used to separate the components of a mixture whose particle sizes are different. Filtration is also used to separate solids from liquids using sieve plates.
Crystallization - The method of crystallization involves the separation of components from a mixture in which the components have a difference in their solubility in a particular solvent. On cooling down the solution, the desired component crystallizes out of the solution.
Distillation - This method involves heating and cooling the mixture with components having large differences in their boiling points. The component with lower boiling point vapourises first. The component vapours are cooled down and collected in separate containers.
Chromatography - This separation technique is based on the difference between the solubilities of the components of a mixture in mobile and stationary phases. The component having greater solubility in the mobile phase is separated and collected first whereas the component with greater solubility in the stationary phase is separated later.
(e)
Interpretation:
The technique used to separate two pigments chlorophyll a and chlorophyll b from spinach leaves is to be described.
Concept introduction:
The basic techniques of separation of mixture components are:
Filtration - The method of filtration is used to separate the components of a mixture whose particle sizes are different. Filtration is also used to separate solids from liquids using sieve plates.
Crystallization - The method of crystallization involves the separation of components from a mixture in which the components have a difference in their solubility in a particular solvent. On cooling down the solution, the desired component crystallizes out of the solution.
Distillation - This method involves heating and cooling the mixture with components having large differences in their boiling points. The component with lower boiling point vapourises first. The component vapours are cooled down and collected in separate containers.
Chromatography - This separation technique is based on the difference between the solubilities of the components of a mixture in mobile and stationary phases. The component having greater solubility in the mobile phase is separated and collected first whereas the component with greater solubility in the stationary phase is separated later.
Want to see the full answer?
Check out a sample textbook solutionChapter 2 Solutions
Chemistry: The Molecular Nature of Matter and Change
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY